blob: 58d2215e647e4f89144cb85c8f18668b9b8fa7ee [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
#include "arm_compute/dynamic_fusion/sketch/OperatorAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuConv2d.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"
#include "tests/CL/CLAccessor.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Validation.h"
#include "tests/validation/dynamic_fusion/Utils.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"
using namespace arm_compute::experimental::dynamic_fusion;
using namespace arm_compute::test::validation::utils;
namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(CL)
TEST_SUITE(INTEGRATION)
TEST_SUITE(DYNAMIC_FUSION)
TEST_CASE(Conv2d, framework::DatasetMode::ALL)
{
/* Computation:
* out = conv2d1x1(direct_conv)(input, weights, bias)
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto t_input_shape = TensorShape(384, 12, 12);
const auto t_weight_shape = TensorShape(384, 1, 1, 16);
const auto t_dst_shape = TensorShape(16, 12, 12);
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto gpu_ctx = GpuWorkloadContext{ &cl_compile_ctx };
GpuWorkloadSketch sketch{ &gpu_ctx };
// Fuse conv2d
Conv2dAttributes conv2d_attr{};
auto input_info = sketch.create_tensor_info(t_input_shape, 1, data_type, data_layout);
auto weight_info = sketch.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));
auto ans_info = sketch.create_tensor_info();
GpuConv2d::create_op(sketch, &input_info, &weight_info, nullptr, &ans_info, conv2d_attr);
auto dst_info = sketch.create_tensor_info();
GpuOutput::create_op(sketch, &ans_info, &dst_info);
// Configure runtime
ClWorkloadRuntime runtime;
runtime.configure(sketch);
// (Important) Allocate auxiliary tensor memory if there are any
// Instead of using ACL allocated memory, the user can choose to import memory into the tensors
for(auto &data : runtime.get_auxiliary_tensors())
{
CLTensor *tensor = data.first;
AuxMemoryInfo aux_mem_req = data.second;
tensor->allocator()->init(*data.first->info(), aux_mem_req.alignment);
tensor->allocator()->allocate(); // Use ACL allocated memory
// auto buf = cl::Buffer();
// tensor->allocator()->import_memory(buf); // Or, import external memory
}
// Construct user tensors
CLTensor t_input{};
CLTensor t_weight{};
CLTensor t_dst{};
// Initialize user tensors
t_input.allocator()->init(input_info);
t_weight.allocator()->init(weight_info);
t_dst.allocator()->init(dst_info);
// Allocate and fill user tensors
// Instead of using ACL allocator, the user can choose to import memory into the tensors
t_input.allocator()->allocate();
t_weight.allocator()->allocate();
t_dst.allocator()->allocate();
fill<float>(CLAccessor(t_input), 0, library.get());
fill<float>(CLAccessor(t_weight), 1, library.get());
// Run runtime
runtime.run({ &t_input, &t_weight, &t_dst });
// Create reference
SimpleTensor<float> ref_t_input{ t_input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_t_weight{ t_weight_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
SimpleTensor<float> ref_t_bias_placeholder{ t_dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
// Fill reference
fill<float>(ref_t_input, 0, library.get());
fill<float>(ref_t_weight, 1, library.get());
auto ref_t_input_nchw = reference::permute(ref_t_input, PermutationVector(1U, 2U, 0U));
auto ref_t_weight_nchw = reference::permute(ref_t_weight, PermutationVector(1U, 2U, 0U));
auto ref_t_bias_placeholder_nchw = reference::permute(ref_t_bias_placeholder, PermutationVector(1U, 2U, 0U));
auto t_dst_shape_nchw = t_dst_shape;
permute(t_dst_shape_nchw, PermutationVector(1U, 2U, 0U));
PadStrideInfo legacy_pad_stride(conv2d_attr.stride().x(), conv2d_attr.stride().y(), conv2d_attr.pad().left, conv2d_attr.pad().right, conv2d_attr.pad().top, conv2d_attr.pad().bottom,
DimensionRoundingType{});
auto ref_t_dst_nchw = reference::convolution_layer(ref_t_input_nchw, ref_t_weight_nchw, ref_t_bias_placeholder_nchw, t_dst_shape_nchw, legacy_pad_stride, conv2d_attr.dilation());
const auto ref_t_dst = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U));
RelativeTolerance<float> tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32);
}
TEST_SUITE(Invalid_Fusion_Should_Fail)
TEST_CASE(Multiple_Complex_Ops_0, framework::DatasetMode::ALL)
{
/* Computation:
* out = conv2d(conv2d(l0_input, l0_weight), l1_weight)
*/
CLScheduler::get().default_reinit();
const auto data_type = DataType::F32;
const auto data_layout = DataLayout::NHWC;
const auto t_input_shape = TensorShape(384, 12, 12);
const auto t_weight_shape = TensorShape(384, 1, 1, 16);
auto t_input_info = TensorInfo(t_input_shape, 1, data_type, data_layout);
auto t_weight_info = TensorInfo(t_weight_shape, 1, data_type, data_layout);
auto t_dst_info = TensorInfo();
Conv2dAttributes conv2d_attr{};
// Create a new workload sketch
auto cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
auto gpu_ctx = GpuWorkloadContext{ &cl_compile_ctx };
GpuWorkloadSketch sketch{ &gpu_ctx };
// Create tensor infos
auto input_info = sketch.create_tensor_info(t_input_shape, 1, data_type, data_layout);
auto weight_info = sketch.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));
auto dst_info = sketch.create_tensor_info();
// Fuse conv2d into the workload
{
// Validate operator
const auto success = GpuConv2d::validate_op(sketch, &input_info, &weight_info, nullptr, &dst_info, conv2d_attr);
ARM_COMPUTE_EXPECT(bool(success), framework::LogLevel::ERRORS);
GpuConv2d::create_op(sketch, &input_info, &weight_info, nullptr, &dst_info, conv2d_attr);
}
// Create tensor infos
auto weight_info_2 = sketch.create_tensor_info(t_weight_info);
auto dst_info_2 = sketch.create_tensor_info();
// Fuse conv2d into the workload
{
// Validate operator, should fail
const auto success = GpuConv2d::validate_op(sketch, &dst_info, &weight_info_2, nullptr, &dst_info_2, conv2d_attr);
ARM_COMPUTE_EXPECT(!bool(success), framework::LogLevel::ERRORS);
}
}
TEST_SUITE_END() // Invalid_Fusion_Should_Fail
TEST_SUITE_END() // DYNAMIC_FUSION
TEST_SUITE_END() // INTEGRATION
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute