blob: be1d01f6c53863896af4a80a37b6fc2195282083 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
#ifdef DATA_TYPE_FP32
precision highp float;
#elif defined(DATA_TYPE_FP16)
precision mediump float;
#endif /*DATA_TYPE_FP32*/
#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) inversesqrt((a))
#define SQCVT_SAT(a) (a)
layout(std140) uniform shader_params
{
TENSOR3D_PARAM_DECLARATION(src);
TENSOR3D_PARAM_DECLARATION(dst);
VECTOR_PARAM_DECLARATION(mean);
VECTOR_PARAM_DECLARATION(var);
VECTOR_PARAM_DECLARATION(beta);
VECTOR_PARAM_DECLARATION(gamma);
};
#ifdef DATA_TYPE_FP32
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, writeonly);
BUFFER_DECLARATION(mean, 3, float, readonly);
BUFFER_DECLARATION(var, 4, float, readonly);
BUFFER_DECLARATION(beta, 5, float, readonly);
BUFFER_DECLARATION(gamma, 6, float, readonly);
/** Apply batch normalization.
*
* @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1"
*
* @param[in] src_ptr Pointer to the first source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p src_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p src_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p src_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p src_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
*/
void main(void)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
Vector mean = CONVERT_TO_VECTOR_STRUCT(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT(var);
Vector beta = CONVERT_TO_VECTOR_STRUCT(beta);
Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma);
float input_value = 0.f;
float denominator = 0.f;
float numerator = 0.f;
float x_bar = 0.f;
float gamma_param = 0.f;
float beta_param = 0.f;
uint current_slice = gl_GlobalInvocationID.z;
input_value = src_ptr[src.current_offset];
denominator = var_ptr[var.current_offset + (current_slice * var.stride_x) >> 2];
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
// Calculate x bar and store results
numerator = mean_ptr[mean.current_offset + (current_slice * mean.stride_x) >> 2];
numerator = SUB_OP(input_value, numerator);
x_bar = MUL_OP(numerator, denominator);
gamma_param = gamma_ptr[gamma.current_offset + (current_slice * beta.stride_x) >> 2];
beta_param = beta_ptr[beta.current_offset + (current_slice * beta.stride_x) >> 2];
dst_ptr[dst.current_offset] = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param);
}
#elif defined(DATA_TYPE_FP16)
BUFFER_DECLARATION(src, 1, uvec2, readonly);
BUFFER_DECLARATION(dst, 2, uvec2, writeonly);
BUFFER_DECLARATION(mean, 3, uvec2, readonly);
BUFFER_DECLARATION(var, 4, uvec2, readonly);
BUFFER_DECLARATION(beta, 5, uvec2, readonly);
BUFFER_DECLARATION(gamma, 6, uvec2, readonly);
/** Apply batch normalization.
*
* @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1"
*
* @param[in] src_ptr Pointer to the first source tensor. Supported data types: F16
* @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p src_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p src_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p src_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p src_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
*/
void main(void)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT_FP16(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT_FP16(dst);
Vector mean = CONVERT_TO_VECTOR_STRUCT_FP16(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT_FP16(var);
Vector beta = CONVERT_TO_VECTOR_STRUCT_FP16(beta);
Vector gamma = CONVERT_TO_VECTOR_STRUCT_FP16(gamma);
uvec2 packed_s[5];
vec4 unpacked_s[5];
float denominator;
float numerator;
float gamma_param;
float beta_param;
vec4 x_bar;
vec4 result;
uint current_slice = gl_GlobalInvocationID.z;
packed_s[0] = src_ptr[src.current_offset >> 3];
packed_s[1] = var_ptr[(var.current_offset + current_slice * var.stride_x) >> 3];
packed_s[2] = mean_ptr[(mean.current_offset + current_slice * mean.stride_x) >> 3];
packed_s[3] = gamma_ptr[(gamma.current_offset + current_slice * beta.stride_x) >> 3];
packed_s[4] = beta_ptr[(beta.current_offset + current_slice * beta.stride_x) >> 3];
unpacked_s[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
unpacked_s[1] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
unpacked_s[2] = vec4(unpackHalf2x16(packed_s[2].x), unpackHalf2x16(packed_s[2].y));
unpacked_s[3] = vec4(unpackHalf2x16(packed_s[3].x), unpackHalf2x16(packed_s[3].y));
unpacked_s[4] = vec4(unpackHalf2x16(packed_s[4].x), unpackHalf2x16(packed_s[4].y));
if((current_slice % uint(4)) == uint(0))
{
denominator = unpacked_s[1].x;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].x;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].x;
beta_param = unpacked_s[4].x;
result = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param);
dst_ptr[dst.current_offset >> 3] = uvec2(packHalf2x16(result.xy), packHalf2x16(result.zw));
}
else if((current_slice % uint(4)) == uint(1))
{
denominator = unpacked_s[1].y;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].y;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].y;
beta_param = unpacked_s[4].y;
result = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param);
dst_ptr[dst.current_offset >> 3] = uvec2(packHalf2x16(result.xy), packHalf2x16(result.zw));
}
else if((current_slice % uint(4)) == uint(2))
{
denominator = unpacked_s[1].z;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].z;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].z;
beta_param = unpacked_s[4].z;
result = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param);
dst_ptr[dst.current_offset >> 3] = uvec2(packHalf2x16(result.xy), packHalf2x16(result.zw));
}
else
{
denominator = unpacked_s[1].w;
denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON))));
//Calculate x bar and store results
numerator = unpacked_s[2].w;
x_bar = MUL_OP(SUB_OP(unpacked_s[0], numerator), denominator);
gamma_param = unpacked_s[3].w;
beta_param = unpacked_s[4].w;
result = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param);
dst_ptr[dst.current_offset >> 3] = uvec2(packHalf2x16(result.xy), packHalf2x16(result.zw));
}
}
#endif /*DATA_TYPE_FP16*/