blob: 3ed27d5f00cd240a9ff875a9684212056e636716 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
#include "helpers.h"
#if defined(DATA_TYPE_FP32)
#define LOAD8(r, name, offset) \
r.x = LOAD4(name, offset); \
r.y = LOAD4(name, offset + uint(1))
#define LOAD16(r, name, offset) \
r.x = LOAD4(name, offset); \
r.y = LOAD4(name, offset + uint(1)); \
r.z = LOAD4(name, offset + uint(2)); \
r.w = LOAD4(name, offset + uint(3))
#define STORE16(name, offset, r) \
STORE4(name, offset, r.x); \
STORE4(name, offset + uint(1), r.y); \
STORE4(name, offset + uint(2), r.z); \
STORE4(name, offset + uint(3), r.w)
#ifdef GEMM_TRANSPOSE1xW
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main(void)
{
/* Compute address for Matrix B - source */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
uint dst_addr_in_bytes = (gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst.stride_y + dst.offset_first_element_in_bytes) >> 2;
vec4 b0;
LOAD16(b0, src, offset(src, 0, 0));
STORE16(dst, dst_addr_in_bytes, b0);
}
#endif /* GEMM_TRANSPOSE1xW */
#ifdef GEMM_INTERLEAVE4x4
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGLES kernel reshapes the input matrix interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main(void)
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
int i;
int j;
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++j)
{
float res = LOAD4(src, offset(src, i, j));
uint ofset0 = CURRENT_OFFSET(dst) + uint(i * 4 + j);
STORE4(dst, ofset0, res);
}
}
}
#endif /* GEMM_INTERLEAVE4x4 */
#ifdef GEMM_ACCUMULATE_BIASES
BUFFER_DECLARATION(accum, 1, float, restrict);
BUFFER_DECLARATION(biases, 2, float, readonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(accum);
VECTOR_PARAM_DECLARATION(biases);
};
/** This kernel accumulates each row with the biases vector
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
* @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
* @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
* @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
void main(void)
{
Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
for(int i = 0; i < 16; ++i)
{
float accum_value = LOAD4(accum, CURRENT_OFFSET(accum) + uint(i));
float biases_value = LOAD4(biases, CURRENT_OFFSET(biases) + uint(i));
accum_value = biases_value + accum_value;
// Store result in the accummulate buffer
STORE4(accum, CURRENT_OFFSET(accum) + uint(i), accum_value);
}
}
#endif /* GEMM_ACCUMULATE_BIASES */
#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */
BUFFER_DECLARATION(src0, 1, float, readonly);
BUFFER_DECLARATION(src1, 2, float, readonly);
BUFFER_DECLARATION(dst, 3, float, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src0);
IMAGE_PARAM_DECLARATION(src1);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main()
{
Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Compute address for matrix A and B */
src0.current_offset = (src0.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.y) * uint(src0.stride_y))) >> uint(2);
src1.current_offset = (src1.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.x) * uint(src1.stride_y))) >> uint(2);
/* Compute end row address for matrix B */
int end_row_mtx_b = int(src1.current_offset) + int(COLS_B);
/* Reset accumulators */
vec4 c00 = vec4(0.0f);
vec4 c10 = vec4(0.0f);
vec4 c20 = vec4(0.0f);
vec4 c30 = vec4(0.0f);
// FIXME: loop unrolling really needed for GLES?
for(; int(src1.current_offset) <= (end_row_mtx_b - 8); src0.current_offset += uint(8), src1.current_offset += uint(8))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0;
vec4 b0;
LOAD16(a0, src0, src0.current_offset);
LOAD16(b0, src1, src1.current_offset);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
/* Load values from matrix A (interleaved) and matrix B (transposed) */
LOAD16(a0, src0, src0.current_offset + uint(4));
LOAD16(b0, src1, src1.current_offset + uint(4));
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
}
for(; int(src1.current_offset) < end_row_mtx_b; src0.current_offset += uint(4), src1.current_offset += uint(4))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
vec4 a0;
vec4 b0;
LOAD16(a0, src0, src0.current_offset);
LOAD16(b0, src1, src1.current_offset);
c00 += vec4(a0.x) * b0;
c10 += vec4(a0.y) * b0;
c20 += vec4(a0.z) * b0;
c30 += vec4(a0.w) * b0;
}
/* Multiply by the weight of matrix product */
c00 = c00 * vec4(ALPHA);
c10 = c10 * vec4(ALPHA);
c20 = c20 * vec4(ALPHA);
c30 = c30 * vec4(ALPHA);
/* Store 4x4 block */
STORE16(dst, offset(dst, 0, 0), c00);
STORE16(dst, offset(dst, 0, 1), c10);
STORE16(dst, offset(dst, 0, 2), c20);
STORE16(dst, offset(dst, 0, 3), c30);
}
#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
#ifdef GEMM_MM_FLOATING_POINT
BUFFER_DECLARATION(src0, 1, float, readonly);
BUFFER_DECLARATION(src1, 2, float, readonly);
BUFFER_DECLARATION(dst, 3, float, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src0);
IMAGE_PARAM_DECLARATION(src1);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main()
{
Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)) >> uint(2);
src1.current_offset = (src1_offset_first_element_in_bytes + uint(idx * 4)) >> uint(2);
/* Compute end row address for matrix A */
int end_row_vec_a = int(src0.current_offset) + ((COLS_A * 4) >> 2);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(src0.current_offset) <= (end_row_vec_a - 2); src0.current_offset += uint(2), src1.current_offset += uint((2 * int(src1_stride_y)) >> 2))
{
vec2 a0;
LOAD8(a0, src0, src0.current_offset);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1;
LOAD8(a1, src0, src0.current_offset + (src0_stride_y >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2;
LOAD8(a2, src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3;
LOAD8(a3, src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0;
vec4 b1;
LOAD16(b0, src1, src1.current_offset);
LOAD16(b1, src1, src1.current_offset + (src1_stride_y >> uint(2)));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.x);
acc1 += b1 * vec4(a1.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.x);
acc2 += b1 * vec4(a2.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.x);
acc3 += b1 * vec4(a3.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; int(src0.current_offset) < end_row_vec_a; src0.current_offset += uint(1), src1.current_offset += uint(int(src1_stride_y) >> 2))
{
// Load values from matrix A
float a0;
a0 = LOAD4(src0, src0.current_offset);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1;
a1 = LOAD4(src0, src0.current_offset + ((uint(1) * src0_stride_y) >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float a2;
a2 = LOAD4(src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3;
a3 = LOAD4(src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 b0;
LOAD16(b0, src1, src1.current_offset);
acc0 += b0 * vec4(a0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
STORE16(dst, offset(dst, 0, 0), acc0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = acc1 * vec4(ALPHA);
STORE16(dst, offset(dst, 0, 1), acc1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = acc2 * vec4(ALPHA);
STORE16(dst, offset(dst, 0, 2), acc2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = acc3 * vec4(ALPHA);
STORE16(dst, offset(dst, 0, 3), acc3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_MATRIXADDITION
BUFFER_DECLARATION(src, 1, float, readonly);
BUFFER_DECLARATION(dst, 2, float, restrict);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value need to be passed at compile time using BETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main(void)
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from A x B */
vec4 alpha_ab;
vec4 c;
vec4 out1;
LOAD16(alpha_ab, dst, dst.current_offset);
LOAD16(c, src, src.current_offset);
/* Computes alpha * axb + beta * c */
out1 = alpha_ab + vec4(BETA * c);
/* Store final result in axb matrix */
STORE16(dst, dst.current_offset, out1);
}
#endif /* GEMM_MATRIXADDITION */
#elif defined(DATA_TYPE_FP16)
precision mediump float;
#ifdef GEMM_MM_FLOATING_POINT
#if defined(MM_PROCESS_4X)
BUFFER_DECLARATION(src0, 1, uint, readonly);
BUFFER_DECLARATION(src1, 2, uvec2, readonly);
BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src0);
IMAGE_PARAM_DECLARATION(src1);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main()
{
Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
/* Compute end row address for matrix A */
uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
{
uint packed_a;
vec2 a0;
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
a0 = vec2(unpackHalf2x16(packed_a));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1;
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
a1 = vec2(unpackHalf2x16(packed_a));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2;
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
a2 = vec2(unpackHalf2x16(packed_a));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3;
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
a3 = vec2(unpackHalf2x16(packed_a));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
uvec2 packed_b1;
vec4 b0;
vec4 b1;
GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
GC_LOAD1_2D_OFFSET(packed_b1, src1, 0, 1);
b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
b1 = vec4(unpackHalf2x16(packed_b1.x), unpackHalf2x16(packed_b1.y));
acc0 += b0 * vec4(a0.x);
acc0 += b1 * vec4(a0.y);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * vec4(a1.x);
acc1 += b1 * vec4(a1.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * vec4(a2.x);
acc2 += b1 * vec4(a2.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * vec4(a3.x);
acc3 += b1 * vec4(a3.y);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y)
{
uint packed_a0;
vec2 a0;
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
a0 = vec2(unpackHalf2x16(packed_a0));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec2 a1;
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1);
a1 = vec2(unpackHalf2x16(packed_a0));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec2 a2;
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2);
a2 = vec2(unpackHalf2x16(packed_a0));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec2 a3;
GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3);
a3 = vec2(unpackHalf2x16(packed_a0));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b0;
vec4 b0;
GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
acc0 += b0 * (a0.x);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * (a1.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * (a2.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * (a3.x);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
uvec2 packed_d;
packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
BUFFER_DECLARATION(src0, 1, uvec4, readonly);
BUFFER_DECLARATION(src1, 2, uvec2, readonly);
BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src0);
IMAGE_PARAM_DECLARATION(src1);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main()
{
Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
/* Compute end row address for matrix A */
uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc0 = vec4(0.0f);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 acc1 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 acc2 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 acc3 = vec4(0.0f);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
{
uvec4 packed_a;
vec4 a0[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 a1[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 a2[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 a3[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b;
vec4 b;
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b * vec4(a1[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b * vec4(a2[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b * vec4(a3[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
}
for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
{
uvec4 packed_a;
vec4 a0[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
vec4 a1[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1);
a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
vec4 a2[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2);
a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
vec4 a3[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3);
a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
uvec2 packed_b;
vec4 b;
int leftover = COLS_A % 8;
for(int i = 0; i < leftover; i++)
{
int j = i >> 2;
int k = i % 4;
GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
acc0 += b * vec4(a0[j][k]);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b * vec4(a1[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b * vec4(a2[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b * vec4(a3[j][k]);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
}
/* Multiply by the weight of vector-matrix product */
acc0 = acc0 * vec4(ALPHA);
uvec2 packed_d;
packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#elif defined(MM_PROCESS_8X) /* PROCESS_4X */
BUFFER_DECLARATION(src0, 1, uvec4, readonly);
BUFFER_DECLARATION(src1, 2, uvec4, readonly);
BUFFER_DECLARATION(dst, 3, uvec4, writeonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(src0);
IMAGE_PARAM_DECLARATION(src1);
IMAGE_PARAM_DECLARATION(dst);
};
/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
void main()
{
Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
/* Compute the address for the vector A and matrix B */
src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
/* Compute end row address for matrix A */
uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
/* Reset accumulators */
vec4 acc[2];
acc[0] = vec4(0.0f);
acc[1] = vec4(0.0f);
for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y)
{
uvec4 packed_a;
vec4 a[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
uvec4 packed_b;
vec4 b[2];
for(int i = 0; i < 8; i++)
{
int j = i >> 2;
int k = i % 4;
GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
}
}
for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y)
{
uvec4 packed_a;
vec4 a[2];
GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0);
a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y));
a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w));
uvec4 packed_b;
vec4 b[2];
int leftover = COLS_A % 8;
for(int i = 0; i < leftover; i++)
{
int j = i >> 2;
int k = i % 4;
GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i);
b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y));
b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w));
acc[0] += b[0] * vec4(a[j][k]);
acc[1] += b[1] * vec4(a[j][k]);
}
}
/* Multiply by the weight of vector-matrix product */
acc[0] = acc[0] * vec4(ALPHA);
acc[1] = acc[1] * vec4(ALPHA);
uvec4 packed_d;
packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw));
GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
}
#endif /* PROCESS_4X */
#endif /* GEMM_MM_FLOATING_POINT */
#ifdef GEMM_ACCUMULATE_BIASES
#if defined(ACCUM_PROCESS_4X)
BUFFER_DECLARATION(accum, 1, uvec2, restrict);
BUFFER_DECLARATION(biases, 2, uvec2, readonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(accum);
VECTOR_PARAM_DECLARATION(biases);
};
/** This kernel accumulates each row with the biases vector
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
* @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
* @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
* @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
void main(void)
{
Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
vec4 u[2];
uvec2 packed_s[2];
GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
u[1] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
vec4 tmp;
tmp = u[0] + u[1];
packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw));
GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
}
#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */
BUFFER_DECLARATION(accum, 1, uvec4, restrict);
BUFFER_DECLARATION(biases, 2, uvec4, readonly);
layout(std140) uniform shader_params
{
IMAGE_PARAM_DECLARATION(accum);
VECTOR_PARAM_DECLARATION(biases);
};
/** This kernel accumulates each row with the biases vector
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
* @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
* @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
* @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
void main(void)
{
Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
vec4 u[2];
vec4 v[2];
uvec4 packed_s[2];
GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w));
v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w));
vec4 r[2];
r[0] = u[0] + v[0];
r[1] = u[1] + v[1];
packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw));
GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
}
#endif /* ACCUM_PROCESS_4X */
#endif /* GEMM_ACCUMULATE_BIASES */
#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */