blob: 610316567969688199451980c64a515fef28c659 [file] [log] [blame]
/*
* Copyright (c) 2017-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_SRC_CPU_KERNELS_NORM_LAYER_GENERIC_NEON_IMPL_H
#define ACL_SRC_CPU_KERNELS_NORM_LAYER_GENERIC_NEON_IMPL_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/helpers/NormalizationHelpers.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
/** Function to perform normalization depending on the given template
* dimension. The second template parameter specifies whether the
* normalization has to be 1D or 2D.
*
* @note Only supported normalizations are:
* - 1D over X or Z
* - 2D over X and Y
*
* @param[in] window Region on which to execute the kernel.
* @param[in] in Source tensor. 3 lower dims represent a single input with dimensions [width, height, IFM],
* and an optional 4th dimension for batch of inputs. Data types supported: FP16/F32. Data layouts supported: NCHW/NHWC.
* @param[in] in_squared Source with each element has been squared. 3 lower dims represent a single input with dimensions [width, height, IFM],
* Data type and layout supported: same as @p input.
* @param[in] out Destination tensor. Output will have the same number of dimensions as input. Data type and layout supported: same as @p input.
* @param[in] ninfo Normalization layer information like the normalization type, normalization size and other parameters.
*/
template <typename T, unsigned int S, unsigned int dim, bool do_2D_norm>
void normalize_float(
const Window &window, const ITensor *in, const ITensor *in_squared, ITensor *out, NormalizationLayerInfo ninfo)
{
/** SIMD vector tag type. */
using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const int window_step_x = S;
Iterator input(in, win);
Iterator input_squared(in_squared, win);
Iterator output(out, win);
const int dim_y = in->info()->data_layout() == DataLayout::NCHW ? 1 : 2;
const int radius = ninfo.norm_size() / 2;
const int input_squared_stride_x = in_squared->info()->strides_in_bytes()[0];
const int input_squared_stride_slice = in_squared->info()->strides_in_bytes()[dim];
const int input_squared_stride_row = in_squared->info()->strides_in_bytes()[dim_y];
const int max_right = in->info()->dimension(dim) - 1;
const int max_bottom = in->info()->dimension(dim_y) - 1;
const auto coeff_vec = wrapper::vdup_n(static_cast<T>(ninfo.scale_coeff()), ExactTagType{});
const auto beta_vec = wrapper::vdup_n(static_cast<T>(ninfo.beta()), ExactTagType{});
const auto kappa_vec = wrapper::vdup_n(static_cast<T>(ninfo.kappa()), ExactTagType{});
auto sequential_normalization = [&](const int x, const Coordinates &id, const int current_row, const int first_row,
const int last_row, const T *input_ptr, const uint8_t *input_squared_start_ptr,
T *output_ptr)
{
const int current_slice = dim == 0 ? x : id[dim];
const int first_slice = std::max(current_slice - radius, 0);
const int last_slice = std::min(current_slice + radius, max_right);
const uint8_t *const input_squared_x_ptr = input_squared_start_ptr + x * input_squared_stride_x;
// Accumulate 2D In-Map values
auto accu = static_cast<T>(0.f);
for (int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const uint8_t *const input_squared_ptr = input_squared_x_ptr + (j - current_row) * input_squared_stride_row;
for (int i = first_slice; i <= last_slice; ++i)
{
accu +=
*reinterpret_cast<const T *>(input_squared_ptr + (i - current_slice) * input_squared_stride_slice);
}
}
// Normalize
const auto normalized =
std::pow(accu * static_cast<T>(ninfo.scale_coeff()) + static_cast<T>(ninfo.kappa()), ninfo.beta());
const auto normalized_pixel = (*(input_ptr + x)) / normalized;
*(output_ptr + x) = normalized_pixel;
};
execute_window_loop(
win,
[&](const Coordinates &id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int first_row = do_2D_norm ? std::max(current_row - radius, 0) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
int x = window_start_x;
// Compute serially starting elements for the case x dimension is width
for (; x < radius && x < window_end_x && dim == 0; ++x)
{
sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(),
output_ptr);
}
// Compute vectorized
for (; x <= window_end_x - window_step_x - radius; x += window_step_x)
{
const int current_slice = dim == 0 ? x : id[dim];
const int first_slice = std::max(current_slice - radius, 0);
const int last_slice = std::min(current_slice + radius, max_right);
const uint8_t *const input_squared_x_ptr = input_squared.ptr() + x * input_squared_stride_x;
// Accumulate 2D In-Map values
auto accu = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
for (int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const uint8_t *const input_squared_ptr =
input_squared_x_ptr + (j - current_row) * input_squared_stride_row;
for (int i = first_slice; i <= last_slice; ++i)
{
accu = wrapper::vadd(
accu, wrapper::vloadq(reinterpret_cast<const T *>(
input_squared_ptr + (i - current_slice) * input_squared_stride_slice)));
}
}
// Normalize
const auto normalized = wrapper::vpow(wrapper::vmla(kappa_vec, coeff_vec, accu), beta_vec);
const auto normalized_pixel = wrapper::vmul(wrapper::vloadq(input_ptr + x), wrapper::vinv(normalized));
wrapper::vstore(reinterpret_cast<T *>(output_ptr + x), normalized_pixel);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(),
output_ptr);
}
},
input, input_squared, output);
}
} // namespace arm_compute
#endif // ACL_SRC_CPU_KERNELS_NORM_LAYER_GENERIC_NEON_IMPL_H