blob: e20bdb58a1cc1fd4e89fc84f8b1ff1340614d345 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Validate.h"
#include <cmath>
#include <numeric>
namespace arm_compute
{
inline uint8_t delta_bilinear_c1u8(const uint8_t *pixel_ptr, size_t stride, float dx, float dy)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = *pixel_ptr;
const float a01 = *(pixel_ptr + 1);
const float a10 = *(pixel_ptr + stride);
const float a11 = *(pixel_ptr + stride + 1);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
}
inline uint8_t pixel_bilinear_c1u8(const uint8_t *first_pixel_ptr, size_t stride, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
const int32_t xi = std::floor(x);
const int32_t yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
return delta_bilinear_c1u8(first_pixel_ptr + xi + yi * stride, stride, dx, dy);
}
inline uint8_t pixel_bilinear_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
x = std::max(-1.f, std::min(x, static_cast<float>(width)));
y = std::max(-1.f, std::min(y, static_cast<float>(height)));
const float xi = std::floor(x);
const float yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
return delta_bilinear_c1u8(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dx, dy);
}
inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
// Calculate sampling position
float in_x = (x + 0.5f) * wr - 0.5f;
float in_y = (y + 0.5f) * hr - 0.5f;
// Get bounding box offsets
int x_from = std::floor(x * wr - 0.5f - in_x);
int y_from = std::floor(y * hr - 0.5f - in_y);
int x_to = std::ceil((x + 1) * wr - 0.5f - in_x);
int y_to = std::ceil((y + 1) * hr - 0.5f - in_y);
// Clamp position to borders
in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
// Clamp bounding box offsets to borders
x_from = ((in_x + x_from) < -1) ? -1 : x_from;
y_from = ((in_y + y_from) < -1) ? -1 : y_from;
x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to;
y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to;
// Get pixel index
const int xi = std::floor(in_x);
const int yi = std::floor(in_y);
// Bounding box elements in each dimension
const int x_elements = (x_to - x_from + 1);
const int y_elements = (y_to - y_from + 1);
ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
// Sum pixels in area
int sum = 0;
for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
{
const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
sum = std::accumulate(ptr, ptr + x_elements, sum);
}
// Return average
return sum / (x_elements * y_elements);
}
template <size_t dimension>
struct IncrementIterators
{
template <typename T, typename... Ts>
static void unroll(T &&it, Ts &&... iterators)
{
it.increment(dimension);
IncrementIterators<dimension>::unroll<Ts...>(std::forward<Ts>(iterators)...);
}
template <typename T>
static void unroll(T &&it)
{
it.increment(dimension);
// End of recursion
}
static void unroll()
{
// End of recursion
}
};
template <size_t dim>
struct ForEachDimension
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
const auto &d = w[dim - 1];
for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...))
{
id.set(dim - 1, v);
ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...);
}
}
};
template <>
struct ForEachDimension<0>
{
template <typename L, typename... Ts>
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
{
lambda_function(id);
}
};
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators)
{
w.validate();
Coordinates id;
ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function), std::forward<Ts>(iterators)...);
}
inline constexpr Iterator::Iterator()
: _ptr(nullptr), _dims()
{
}
inline Iterator::Iterator(const ITensor *tensor, const Window &win)
: Iterator()
{
ARM_COMPUTE_ERROR_ON(tensor == nullptr);
const ITensorInfo *info = tensor->info();
ARM_COMPUTE_ERROR_ON(info == nullptr);
const Strides &strides = info->strides_in_bytes();
_ptr = tensor->buffer() + info->offset_first_element_in_bytes();
//Initialize the stride for each dimension and calculate the position of the first element of the iteration:
for(unsigned int n = 0; n < info->num_dimensions(); ++n)
{
_dims[n]._stride = win[n].step() * strides[n];
std::get<0>(_dims)._dim_start += strides[n] * win[n].start();
}
//Copy the starting point to all the dimensions:
for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n)
{
_dims[n]._dim_start = std::get<0>(_dims)._dim_start;
}
ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions());
}
inline void Iterator::increment(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
_dims[dimension]._dim_start += _dims[dimension]._stride;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline constexpr int Iterator::offset() const
{
return _dims.at(0)._dim_start;
}
inline constexpr uint8_t *Iterator::ptr() const
{
return _ptr + _dims.at(0)._dim_start;
}
inline void Iterator::reset(const size_t dimension)
{
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1);
_dims[dimension]._dim_start = _dims[dimension + 1]._dim_start;
for(unsigned int n = 0; n < dimension; ++n)
{
_dims[n]._dim_start = _dims[dimension]._dim_start;
}
}
inline bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, int fixed_point_position)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_data_type(data_type);
info.set_num_channels(num_channels);
info.set_tensor_shape(shape);
info.set_fixed_point_position(fixed_point_position);
return true;
}
return false;
}
inline bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape)
{
if(info.tensor_shape().total_size() == 0)
{
info.set_tensor_shape(shape);
return true;
}
return false;
}
inline bool set_format_if_unknown(ITensorInfo &info, Format format)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_format(format);
return true;
}
return false;
}
inline bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type)
{
if(info.data_type() == DataType::UNKNOWN)
{
info.set_data_type(data_type);
return true;
}
return false;
}
inline bool set_fixed_point_position_if_zero(ITensorInfo &info, int fixed_point_position)
{
if(info.fixed_point_position() == 0 && (info.data_type() == DataType::QS8 || info.data_type() == DataType::QS16))
{
info.set_fixed_point_position(fixed_point_position);
return true;
}
return false;
}
inline ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape, InterpolationPolicy policy, BorderSize border_size, bool border_undefined)
{
const auto wr = static_cast<float>(dst_shape[0]) / static_cast<float>(src_info.tensor_shape()[0]);
const auto hr = static_cast<float>(dst_shape[1]) / static_cast<float>(src_info.tensor_shape()[1]);
Coordinates anchor;
anchor.set_num_dimensions(src_info.tensor_shape().num_dimensions());
TensorShape new_dst_shape(dst_shape);
anchor.set(0, (policy == InterpolationPolicy::BILINEAR
&& border_undefined) ?
((static_cast<int>(src_info.valid_region().anchor[0]) + border_size.left + 0.5f) * wr - 0.5f) :
((static_cast<int>(src_info.valid_region().anchor[0]) + 0.5f) * wr - 0.5f));
anchor.set(1, (policy == InterpolationPolicy::BILINEAR
&& border_undefined) ?
((static_cast<int>(src_info.valid_region().anchor[1]) + border_size.top + 0.5f) * hr - 0.5f) :
((static_cast<int>(src_info.valid_region().anchor[1]) + 0.5f) * hr - 0.5f));
float shape_out_x = (policy == InterpolationPolicy::BILINEAR
&& border_undefined) ?
((static_cast<int>(src_info.valid_region().anchor[0]) + static_cast<int>(src_info.valid_region().shape[0]) - 1) - 1 + 0.5f) * wr - 0.5f :
((static_cast<int>(src_info.valid_region().anchor[0]) + static_cast<int>(src_info.valid_region().shape[0])) + 0.5f) * wr - 0.5f;
float shape_out_y = (policy == InterpolationPolicy::BILINEAR
&& border_undefined) ?
((static_cast<int>(src_info.valid_region().anchor[1]) + static_cast<int>(src_info.valid_region().shape[1]) - 1) - 1 + 0.5f) * hr - 0.5f :
((static_cast<int>(src_info.valid_region().anchor[1]) + static_cast<int>(src_info.valid_region().shape[1])) + 0.5f) * hr - 0.5f;
new_dst_shape.set(0, shape_out_x - anchor[0]);
new_dst_shape.set(1, shape_out_y - anchor[1]);
return ValidRegion(std::move(anchor), std::move(new_dst_shape));
}
} // namespace arm_compute