blob: 3b09218646f8c51a524e5bd2103c1fda23da5c12 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cstddef>
#include <arm_neon.h>
namespace arm_conv {
namespace winograd {
namespace weight_transform {
void arm_fp32_2x2_5x5(
unsigned int n_channels,
const float *inptr, const size_t ld_weight_row, const size_t ld_weight_col,
float *outptr, const size_t matrix_stride
)
{
#ifdef __aarch64__
// For each output channel
for (; n_channels >= 4; n_channels -= 4)
{
// Matrices used and computed in this kernel
float32x4_t w[5][5], Ww[6][5], V[6][6];
// Read weights
for (int i = 0; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
w[i][j] = vld1q_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 5; j++)
{
// Ww[0][j] = w[0][j]/4.0f;
Ww[0][j] = vmulq_n_f32(w[0][j], 1.0f/4.0f);
// Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
Ww[1][j] = vmulq_n_f32(
vaddq_f32(
vaddq_f32(
vaddq_f32(w[1][j], w[0][j]),
vaddq_f32(w[3][j], w[2][j])
),
w[4][j]
),
-1.0f/6.0f
);
// Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
// Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f;
Ww[2][j] = vmulq_n_f32(
vsubq_f32(
vaddq_f32(
vsubq_f32(w[1][j], w[0][j]),
vsubq_f32(w[3][j], w[2][j])
),
w[4][j]
),
1.0f/6.0f
);
// Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
Ww[3][j] = vmulq_n_f32(
vmlaq_n_f32(
vaddq_f32(
vaddq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)),
vaddq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
),
w[4][j], 2.0f
),
1.0f/3.0f
);
// Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
Ww[4][j] = vmulq_n_f32(
vmlaq_n_f32(
vaddq_f32(
vsubq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)),
vsubq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
),
w[4][j], 2.0f
),
1.0f/3.0f
);
// Ww[5][j] = w[4][j];
Ww[5][j] = w[4][j];
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
// V[i][0] = Ww[i][0]/4.0f;
V[i][0] = vmulq_n_f32(Ww[i][0], 1.0f/4.0f);
// V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
V[i][1] = vmulq_n_f32(
vaddq_f32(
vaddq_f32(
vaddq_f32(Ww[i][1], Ww[i][0]),
vaddq_f32(Ww[i][3], Ww[i][2])
),
Ww[i][4]
),
-1.0f/6.0f
);
// V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
// V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f;
V[i][2] = vmulq_n_f32(
vsubq_f32(
vaddq_f32(
vsubq_f32(Ww[i][1], Ww[i][0]),
vsubq_f32(Ww[i][3], Ww[i][2])
),
Ww[i][4]
),
1.0f/6.0f
);
// V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][3] = vmulq_n_f32(
vmlaq_n_f32(
vaddq_f32(
vaddq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)),
vaddq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
),
Ww[i][4], 2.0f
),
1.0f/3.0f
);
// V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][4] = vmulq_n_f32(
vmlaq_n_f32(
vaddq_f32(
vsubq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)),
vsubq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
),
Ww[i][4], 2.0f
),
1.0f/3.0f
);
// V[i][5] = Ww[i][4];
V[i][5] = Ww[i][4];
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
vst1q_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 4;
outptr += 4;
}
#endif // __aarch64__
for (; n_channels >= 2; n_channels -= 2)
{
// Matrices used and computed in this kernel
float32x2_t w[5][5], Ww[6][5], V[6][6];
// Read weights
for (int i = 0; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
w[i][j] = vld1_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 5; j++)
{
// Ww[0][j] = w[0][j]/4.0f;
Ww[0][j] = vmul_n_f32(w[0][j], 1.0f/4.0f);
// Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
Ww[1][j] = vmul_n_f32(
vadd_f32(
vadd_f32(
vadd_f32(w[1][j], w[0][j]),
vadd_f32(w[3][j], w[2][j])
),
w[4][j]
),
-1.0f/6.0f
);
// Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
// Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f;
Ww[2][j] = vmul_n_f32(
vsub_f32(
vadd_f32(
vsub_f32(w[1][j], w[0][j]),
vsub_f32(w[3][j], w[2][j])
),
w[4][j]
),
1.0f/6.0f
);
// Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
Ww[3][j] = vmul_n_f32(
vmla_n_f32(
vadd_f32(
vadd_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)),
vadd_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
),
w[4][j], 2.0f
),
1.0f/3.0f
);
// Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
Ww[4][j] = vmul_n_f32(
vmla_n_f32(
vadd_f32(
vsub_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)),
vsub_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j])
),
w[4][j], 2.0f
),
1.0f/3.0f
);
// Ww[5][j] = w[4][j];
Ww[5][j] = w[4][j];
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
// V[i][0] = Ww[i][0]/4.0f;
V[i][0] = vmul_n_f32(Ww[i][0], 1.0f/4.0f);
// V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
V[i][1] = vmul_n_f32(
vadd_f32(
vadd_f32(
vadd_f32(Ww[i][1], Ww[i][0]),
vadd_f32(Ww[i][3], Ww[i][2])
),
Ww[i][4]
),
-1.0f/6.0f
);
// V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
// V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f;
V[i][2] = vmul_n_f32(
vsub_f32(
vadd_f32(
vsub_f32(Ww[i][1], Ww[i][0]),
vsub_f32(Ww[i][3], Ww[i][2])
),
Ww[i][4]
),
1.0f/6.0f
);
// V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][3] = vmul_n_f32(
vmla_n_f32(
vadd_f32(
vadd_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)),
vadd_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
),
Ww[i][4], 2.0f
),
1.0f/3.0f
);
// V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][4] = vmul_n_f32(
vmla_n_f32(
vadd_f32(
vsub_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)),
vsub_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3])
),
Ww[i][4], 2.0f
),
1.0f/3.0f
);
// V[i][5] = Ww[i][4];
V[i][5] = Ww[i][4];
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
vst1_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 2;
outptr += 2;
}
for (; n_channels; n_channels--)
{
// Matrices used and computed in this kernel
float w[5][5], Ww[6][5], V[6][6];
// Read weights
for (int i = 0; i < 5; i++)
{
for (int j = 0; j < 5; j++)
{
w[i][j] = *(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 5; j++)
{
Ww[0][j] = w[0][j]/4.0f;
Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f;
Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f;
Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f;
Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f;
Ww[5][j] = w[4][j];
}
// Compute V = W w WT
for (int i = 0; i < 6; i++)
{
V[i][0] = Ww[i][0]/4.0f;
V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f;
V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f;
V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f;
V[i][5] = Ww[i][4];
}
// Store the transformed weights
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
*(outptr + m*matrix_stride) = V[i][j];
}
}
inptr++;
outptr++;
}
}
} // namespace weight_transform
} // namespace winograd
} // namespace arm_conv