blob: fc902c4dfa29957aeacace1d5d062388dabf65b9 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLReductionOperation.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLReductionOperationKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/Tensor.h"
#include "arm_compute/runtime/Utils.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
CLReductionOperation::CLReductionOperation(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _results_vector(), _reduction_kernels_vector(), _border_handlers_vector(), _reshape_kernel(), _op(), _num_of_stages(), _reduction_axis(), _is_serial(),
_is_reshape_required(false)
{
}
Status CLReductionOperation::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op, bool keep_dims)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
const unsigned int num_of_stages = calculate_number_of_stages_only_x_axis(input->dimension(0), axis);
const bool is_serial = needs_serialized_reduction(op, input->data_type(), axis);
const bool is_reshape_required = !keep_dims;
if(is_reshape_required && output->total_size() != 0)
{
const TensorInfo expected_output_shape = output->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, keep_dims));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output_shape, output);
}
auto *output_internal = output;
TensorInfo output_before_reshape;
const auto input_shape = input->tensor_shape();
const auto input_data_type = input->data_type();
const auto input_num_channles = input->num_channels();
const auto input_qinfo = input->quantization_info();
const auto output_data_type = output->data_type();
auto initialize_tensorinfo = [](TensorInfo & ti, TensorShape shape, DataType data_type, int num_channels, QuantizationInfo qinfo)
{
ti.set_data_type(data_type).set_tensor_shape(shape).set_num_channels(num_channels).set_quantization_info(qinfo);
};
if(is_reshape_required)
{
auto shape_before_reshape = input_shape;
shape_before_reshape.set(axis, 1);
initialize_tensorinfo(output_before_reshape, shape_before_reshape, output_data_type, input_num_channles, input_qinfo);
output_internal = &output_before_reshape;
}
if(is_serial)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, output_internal, axis, op));
}
else
{
// Create temporary tensor infos
std::vector<TensorInfo> sums_vector(num_of_stages - 1);
// Create intermediate tensor info
TensorShape shape{ input_shape };
shape.set(0, ceil(shape.x() / 128.f));
for(unsigned int i = 0; i < num_of_stages - 1; i++)
{
initialize_tensorinfo(sums_vector[i], shape, input_data_type, input_num_channles, input_qinfo);
}
ReductionOperation first_kernel_op;
ReductionOperation intermediate_kernel_op;
ReductionOperation last_kernel_op;
switch(op)
{
case ReductionOperation::SUM:
case ReductionOperation::MEAN_SUM:
first_kernel_op = ReductionOperation::SUM;
intermediate_kernel_op = ReductionOperation::SUM;
last_kernel_op = op;
break;
case ReductionOperation::SUM_SQUARE:
first_kernel_op = ReductionOperation::SUM_SQUARE;
intermediate_kernel_op = ReductionOperation::SUM;
last_kernel_op = ReductionOperation::SUM;
break;
case ReductionOperation::PROD:
first_kernel_op = ReductionOperation::PROD;
intermediate_kernel_op = ReductionOperation::PROD;
last_kernel_op = ReductionOperation::PROD;
break;
case ReductionOperation::MIN:
first_kernel_op = ReductionOperation::MIN;
intermediate_kernel_op = ReductionOperation::MIN;
last_kernel_op = ReductionOperation::MIN;
break;
case ReductionOperation::MAX:
first_kernel_op = ReductionOperation::MAX;
intermediate_kernel_op = ReductionOperation::MAX;
last_kernel_op = ReductionOperation::MAX;
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
// Validate ReductionOperation only on first kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(input, &sums_vector[0], axis, first_kernel_op));
// Validate ReductionOperation on intermediate stages
for(unsigned int i = 1; i < num_of_stages - 1; ++i)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[i - 1], &sums_vector[i], axis, intermediate_kernel_op));
}
// Validate ReductionOperation on the last stage
const unsigned int last_stage = num_of_stages - 1;
ARM_COMPUTE_RETURN_ON_ERROR(CLReductionOperationKernel::validate(&sums_vector[last_stage - 1], output_internal, axis, last_kernel_op, input->dimension(0)));
}
if(is_reshape_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayerKernel::validate(output_internal, output));
}
return Status{};
}
ICLTensor *CLReductionOperation::configure_intermediate_result_vector(ICLTensor *input, ICLTensor *output)
{
if(!_is_reshape_required && _is_serial)
{
return output;
}
auto intermediate_result_vector_size = _is_serial ? 1 : _num_of_stages;
if(!_is_reshape_required)
{
--intermediate_result_vector_size;
}
_results_vector.resize(intermediate_result_vector_size);
auto shape = input->info()->tensor_shape();
shape.set(_reduction_axis, _is_serial ? 1 : ceil(shape.x() / 128.f));
for(auto &v : _results_vector)
{
if(&v == &_results_vector.back() && _is_reshape_required)
{
shape.set(_reduction_axis, 1);
}
v.allocator()->init(input->info()->clone()->set_tensor_shape(shape));
}
return _is_reshape_required ? &_results_vector.back() : output;
}
void CLReductionOperation::configure(ICLTensor *input, ICLTensor *output, unsigned int axis, ReductionOperation op, bool keep_dims)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
_op = op;
_num_of_stages = calculate_number_of_stages_only_x_axis(input->info()->dimension(0), axis);
_reduction_axis = axis;
_is_serial = needs_serialized_reduction(op, input->info()->data_type(), axis);
_is_reshape_required = !keep_dims;
auto *output_internal = configure_intermediate_result_vector(input, output);
if(_is_reshape_required)
{
const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_reduced_shape(input->info()->tensor_shape(), axis, false);
const auto output_data_type = input->info()->data_type();
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true));
}
// Configure reduction operation kernels
_reduction_kernels_vector.resize(_num_of_stages);
// Create temporary tensors
if(_is_serial)
{
if(_is_reshape_required)
{
_memory_group.manage(&_results_vector.back());
}
_reduction_kernels_vector[0].configure(input, output_internal, axis, op, 0);
}
else
{
_border_handlers_vector.resize(_num_of_stages);
_memory_group.manage(&_results_vector[0]);
ReductionOperation first_kernel_op;
ReductionOperation intermediate_kernel_op;
ReductionOperation last_kernel_op;
PixelValue pixelValue;
switch(op)
{
case ReductionOperation::SUM:
case ReductionOperation::MEAN_SUM:
first_kernel_op = ReductionOperation::SUM;
intermediate_kernel_op = ReductionOperation::SUM;
last_kernel_op = op;
pixelValue = PixelValue();
break;
case ReductionOperation::SUM_SQUARE:
first_kernel_op = ReductionOperation::SUM_SQUARE;
intermediate_kernel_op = ReductionOperation::SUM;
last_kernel_op = ReductionOperation::SUM;
pixelValue = PixelValue();
break;
case ReductionOperation::PROD:
first_kernel_op = ReductionOperation::PROD;
intermediate_kernel_op = ReductionOperation::PROD;
last_kernel_op = ReductionOperation::PROD;
pixelValue = PixelValue(1, input->info()->data_type());
break;
case ReductionOperation::MIN:
first_kernel_op = ReductionOperation::MIN;
intermediate_kernel_op = ReductionOperation::MIN;
last_kernel_op = ReductionOperation::MIN;
switch(input->info()->data_type())
{
case DataType::F32:
{
pixelValue = PixelValue(std::numeric_limits<float>::max());
break;
}
case DataType::F16:
{
pixelValue = PixelValue(static_cast<half>(65504.0f));
break;
}
case DataType::QASYMM8:
{
pixelValue = std::get<1>(get_min_max(input->info()->data_type()));
break;
}
case DataType::QASYMM8_SIGNED:
{
pixelValue = PixelValue(127, input->info()->data_type(), input->info()->quantization_info());
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported DataType");
}
}
break;
case ReductionOperation::MAX:
first_kernel_op = ReductionOperation::MAX;
intermediate_kernel_op = ReductionOperation::MAX;
last_kernel_op = ReductionOperation::MAX;
switch(input->info()->data_type())
{
case DataType::F32:
{
pixelValue = PixelValue(-std::numeric_limits<float>::max());
break;
}
case DataType::F16:
{
pixelValue = PixelValue(static_cast<half>(-65504.0f));
break;
}
case DataType::QASYMM8:
{
pixelValue = std::get<0>(get_min_max(input->info()->data_type()));
break;
}
case DataType::QASYMM8_SIGNED:
{
pixelValue = PixelValue(-128, input->info()->data_type(), input->info()->quantization_info());
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported DataType");
}
}
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
_reduction_kernels_vector[0].configure(input, &_results_vector[0], axis, first_kernel_op);
_border_handlers_vector[0].configure(input, _reduction_kernels_vector[0].border_size(), BorderMode::CONSTANT, pixelValue);
// Apply ReductionOperation on intermediate stages
for(unsigned int i = 1; i < _num_of_stages - 1; ++i)
{
_memory_group.manage(&_results_vector[i]);
_reduction_kernels_vector[i].configure(&_results_vector[i - 1], &_results_vector[i], axis, intermediate_kernel_op);
_border_handlers_vector[i].configure(&_results_vector[i - 1], _reduction_kernels_vector[i].border_size(), BorderMode::CONSTANT, pixelValue);
_results_vector[i - 1].allocator()->allocate();
}
// Apply ReductionOperation on the last stage
const unsigned int last_stage = _num_of_stages - 1;
const unsigned int input_width = input->info()->dimension(0);
if(_is_reshape_required)
{
_memory_group.manage(&_results_vector.back());
}
_reduction_kernels_vector[last_stage].configure(&_results_vector[last_stage - 1], output_internal, axis, last_kernel_op, input_width);
_border_handlers_vector[last_stage].configure(&_results_vector[last_stage - 1], _reduction_kernels_vector[last_stage].border_size(), BorderMode::CONSTANT, pixelValue);
_results_vector[last_stage - 1].allocator()->allocate();
}
if(_is_reshape_required)
{
_reshape_kernel.configure(&_results_vector.back(), output);
_results_vector.back().allocator()->allocate();
}
}
void CLReductionOperation::run()
{
MemoryGroupResourceScope scope_mg(_memory_group);
if(_is_serial)
{
CLScheduler::get().enqueue(_reduction_kernels_vector[0], false);
}
else
{
for(unsigned int i = 0; i < _num_of_stages; ++i)
{
CLScheduler::get().enqueue(_border_handlers_vector[i], false);
CLScheduler::get().enqueue(_reduction_kernels_vector[i], false);
}
}
if(_is_reshape_required)
{
CLScheduler::get().enqueue(_reshape_kernel, false);
}
}
} // namespace arm_compute