blob: be5fa4cc4c32dd561ef196518124ac2f46fbaa30 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEPoolingLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "support/ToolchainSupport.h"
#include <algorithm>
#include <arm_neon.h>
#include <cmath>
#include <limits>
#include <set>
#include <string>
#include <tuple>
using namespace arm_compute;
namespace
{
void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h)
{
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
}
template <bool exclude_padding>
inline float calculate_avg_scale(const Coordinates &id, const int pool_size, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
int start_x = id.x() * stride_x - pad_x;
int start_y = id.y() * stride_y - pad_y;
const int end_x = std::min(start_x + pool_size, upper_bound_w);
const int end_y = std::min(start_y + pool_size, upper_bound_h);
if(exclude_padding)
{
start_x = std::max(0, start_x);
start_y = std::max(0, start_y);
}
return 1.f / ((end_y - start_y) * (end_x - start_x));
}
inline qint8_t calculate_avg_scale_q8(const Coordinates &id, int pool_size, int upper_bound_w, int upper_bound_h,
int pad_x, int pad_y, int stride_x, int stride_y, int fixed_point_position)
{
static const std::array<qint8_t, 10> scale_values_q8 =
{ { 0x0, 0x0, 0x40, 0x2A, 0x20, 0x19, 0x15, 0x12, 0x10, 0xE } };
const int start_x = id.x() * stride_x - pad_x;
const int start_y = id.y() * stride_y - pad_y;
const int end_x = std::min(start_x + pool_size, upper_bound_w);
const int end_y = std::min(start_y + pool_size, upper_bound_h);
const int val = ((end_y - start_y) * (end_x - start_x));
return sshr_qs8(scale_values_q8[val], (7 - fixed_point_position));
}
inline qint16_t calculate_avg_scale_q16(const Coordinates &id, int pool_size, int upper_bound_w, int upper_bound_h,
int pad_x, int pad_y, int stride_x, int stride_y, int fixed_point_position)
{
static std::array<qint16_t, 10> scale_values_q16 =
{ { 0x0, 0x0, 0x4000, 0x2AAB, 0x2000, 0x199A, 0x1555, 0x1249, 0x1000, 0xE38 } };
const int start_x = id.x() * stride_x - pad_x;
const int start_y = id.y() * stride_y - pad_y;
const int end_x = std::min(start_x + pool_size, upper_bound_w);
const int end_y = std::min(start_y + pool_size, upper_bound_h);
const int val = ((end_y - start_y) * (end_x - start_x));
return sshr_qs16(scale_values_q16[val], (15 - fixed_point_position));
}
template <bool exclude_padding>
inline void scale_vector_s16x8(uint16x8_t &v, const Coordinates &id, int id_offset, int step,
const int pool_size, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
int start_x = (id.x() + id_offset) * stride_x - pad_x;
int start_y = id.y() * stride_y - pad_y;
const int end_y = std::min(start_y + pool_size, upper_bound_h);
if(exclude_padding)
{
start_y = std::max(0, start_y);
}
std::array<uint16_t, 8> elems =
{
{
vgetq_lane_u16(v, 0),
vgetq_lane_u16(v, 1),
vgetq_lane_u16(v, 2),
vgetq_lane_u16(v, 3),
vgetq_lane_u16(v, 4),
vgetq_lane_u16(v, 5),
vgetq_lane_u16(v, 6),
vgetq_lane_u16(v, 7),
}
};
for(auto &el : elems)
{
int c_start_x = start_x;
const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
if(exclude_padding)
{
c_start_x = std::max(0, c_start_x);
}
float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
el *= scale;
start_x += step * stride_x;
}
v = vsetq_lane_u16(elems[0], v, 0);
v = vsetq_lane_u16(elems[1], v, 1);
v = vsetq_lane_u16(elems[2], v, 2);
v = vsetq_lane_u16(elems[3], v, 3);
v = vsetq_lane_u16(elems[4], v, 4);
v = vsetq_lane_u16(elems[5], v, 5);
v = vsetq_lane_u16(elems[6], v, 6);
v = vsetq_lane_u16(elems[7], v, 7);
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &pooled_w, unsigned int pooled_h, int pool_size)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
int pool_stride_x = 0;
int pool_stride_y = 0;
PoolingType pool_type = pool_info.pool_type();
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
const bool exclude_padding = pool_info.exclude_padding();
const bool is_global_pooling = pool_info.is_global_pooling();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
static const std::set<int> supported_pool_sizes = { 2, 3 };
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON((supported_pool_sizes.find(pool_size) == supported_pool_sizes.end()) && ((input->data_type() != DataType::F32) && (input->data_type() != DataType::QASYMM8)));
ARM_COMPUTE_RETURN_ERROR_ON(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_fixed_point(input->data_type()) && pool_stride_x > 2);
ARM_COMPUTE_RETURN_ERROR_ON(exclude_padding && is_data_type_fixed_point(input->data_type()));
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h));
}
return Status{};
}
Status validate_arguments_pool_info(const ITensorInfo *input, const PoolingLayerInfo &pool_info, const unsigned int pool_size)
{
const bool is_global_pooling = pool_info.is_global_pooling();
ARM_COMPUTE_UNUSED(pool_size);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()),
"Global pooling is supported only with rectangular inputs!");
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &num_elems_processed_per_iteration,
BorderSize &border_size,
unsigned int pooled_w, unsigned int pooled_h, int pool_size)
{
unsigned int num_elems_read_per_iteration = 0;
unsigned int num_elems_horizontal_window = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int input_width = input->dimension(0);
const int input_height = input->dimension(1);
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
const int pool_pad_right = pad_stride_info.pad_right();
const int pool_pad_top = pad_stride_info.pad_top();
const int pool_pad_left = pad_stride_info.pad_left();
const int pool_pad_bottom = pad_stride_info.pad_bottom();
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pad_stride_info);
// Select element size
switch(input->data_type())
{
case DataType::QS8:
num_elems_read_per_iteration = 16;
switch(pool_size)
{
case 2:
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
break;
case 3:
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
break;
default:
ARM_COMPUTE_ERROR("Pooling size not supported");
break;
}
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
case DataType::QASYMM8:
switch(pool_size)
{
case 2:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
case 3:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
default:
num_elems_read_per_iteration = 1;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
}
break;
case DataType::QS16:
num_elems_read_per_iteration = 8;
switch(pool_size)
{
case 2:
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 4 : 7;
break;
case 3:
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 3 : 6;
break;
default:
ARM_COMPUTE_ERROR("Pooling size not supported");
}
num_elems_horizontal_window = (pool_stride_x == 2) ? 4 : 8;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
switch(pool_size)
{
case 2:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = 8;
num_elems_horizontal_window = 8;
break;
case 3:
num_elems_read_per_iteration = 4;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
ARM_COMPUTE_ERROR("Pooling size not supported");
break;
}
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
switch(pool_size)
{
case 2:
num_elems_read_per_iteration = 2;
break;
case 3:
num_elems_read_per_iteration = 4; // We use vload4 for pooling3
break;
case 7:
num_elems_read_per_iteration = 8; // We use vload8 for pooling7
break;
default:
num_elems_read_per_iteration = 1; // We use vload4 for poolingN but with a leftover for loop
break;
}
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
// Number of iterations in X dimension
const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
// Upper limit for the number of right/bottom border elements that are accessed
const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size) - input_height;
border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
border_size.right = std::max(upper_bound_w, pool_pad_right);
border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
bool window_changed = false;
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
Window win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
AccessWindowStatic input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom);
if(output->total_size() != 0)
{
AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
else
{
window_changed = update_window_and_padding(win, input_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
NEPoolingLayerKernel::NEPoolingLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _pool_info(), _num_elems_processed_per_iteration(0), _border_size(0)
{
}
BorderSize NEPoolingLayerKernel::border_size() const
{
return _border_size;
}
void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
const PoolingType pool_type = pool_info.pool_type();
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
const bool exclude_padding = pool_info.exclude_padding();
const bool is_global_pooling = pool_info.is_global_pooling();
const int pool_stride_x = pad_stride_info.stride().first;
// Update pool size in case of global pooling
const int pool_size = is_global_pooling ? input->info()->dimension(0) : pool_info.pool_size();
// Validate pool info before calling scaled_dimensions
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(input->info(), pool_info, pool_size));
// Check output dimensions
unsigned int pooled_w, pooled_h;
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0),
input->info()->dimension(1),
pool_size,
pool_size,
pad_stride_info);
// Output auto initialization if not yet initialized
auto_init(input->info(), output->info(), pooled_w, pooled_h);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h, pool_size));
// Set instance variables
_input = input;
_output = output;
_pool_info = pool_info;
// Get data type
const DataType data_type = input->info()->data_type();
// Select appropriate function
if(data_type == DataType::QS8)
{
switch(pool_size)
{
case 2:
switch(pool_type)
{
case PoolingType::AVG:
_func = &NEPoolingLayerKernel::pooling2_q8<PoolingType::AVG>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling2_q8<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
case 3:
switch(pool_type)
{
case PoolingType::AVG:
_func = &NEPoolingLayerKernel::pooling3_q8<PoolingType::AVG>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling3_q8<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling size!");
}
}
else if(data_type == DataType::QASYMM8)
{
if(pool_size == 2 && pool_stride_x < 3)
{
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling2_qasymm8<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling2_qasymm8<PoolingType::AVG, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling2_qasymm8<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
}
else if(pool_size == 3 && pool_stride_x < 3)
{
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling3_qasymm8<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling3_qasymm8<PoolingType::AVG, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling3_qasymm8<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
}
else
{
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::poolingN_qasymm8<PoolingType::AVG, true> : &NEPoolingLayerKernel::poolingN_qasymm8<PoolingType::AVG, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::poolingN_qasymm8<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
}
}
else if(data_type == DataType::QS16)
{
switch(pool_size)
{
case 2:
switch(pool_type)
{
case PoolingType::AVG:
_func = &NEPoolingLayerKernel::pooling2_q16<PoolingType::AVG>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling2_q16<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
case 3:
switch(pool_type)
{
case PoolingType::AVG:
_func = &NEPoolingLayerKernel::pooling3_q16<PoolingType::AVG>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling3_q16<PoolingType::MAX>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling size!");
}
}
else if(data_type == DataType::F16)
{
switch(pool_size)
{
case 2:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling2_f16<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling2_f16<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling2_f16<PoolingType::L2, true> : &NEPoolingLayerKernel::pooling2_f16<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling2_f16<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
case 3:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling3_f16<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling3_f16<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling3_f16<PoolingType::L2, true> : &NEPoolingLayerKernel::pooling3_f16<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling3_f16<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling size!");
}
}
else if(data_type == DataType::F32)
{
switch(pool_size)
{
case 2:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling2_f32<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling2_f32<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling2_f32<PoolingType::L2, true> : &NEPoolingLayerKernel::pooling2_f32<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling2_f32<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
case 3:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling3_f32<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling3_f32<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling3_f32<PoolingType::L2, true> : &NEPoolingLayerKernel::pooling3_f32<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling3_f32<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
case 7:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling7_f32<PoolingType::AVG, true> : &NEPoolingLayerKernel::pooling7_f32<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::pooling7_f32<PoolingType::L2, true> : &NEPoolingLayerKernel::pooling7_f32<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::pooling7_f32<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
default:
switch(pool_type)
{
case PoolingType::AVG:
_func = (exclude_padding) ? &NEPoolingLayerKernel::poolingN_f32<PoolingType::AVG, true> : &NEPoolingLayerKernel::poolingN_f32<PoolingType::AVG, false>;
break;
case PoolingType::L2:
_func = (exclude_padding) ? &NEPoolingLayerKernel::poolingN_f32<PoolingType::L2, true> : &NEPoolingLayerKernel::poolingN_f32<PoolingType::L2, false>;
break;
case PoolingType::MAX:
_func = &NEPoolingLayerKernel::poolingN_f32<PoolingType::MAX, false>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported pooling type!");
}
break;
}
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling2_q8(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int fixed_point_position = _input->info()->fixed_point_position();
constexpr int pool_size = 2;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + pool_pad_right;
const int upper_bound_h = _input->info()->dimension(1) + pool_pad_bottom;
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_top_ptr + input.offset()));
const auto bottom_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_bottom_ptr + input.offset()));
qint8x8_t lower_res = {};
qint8x8_t upper_res = {};
if(pooling_type == PoolingType::AVG)
{
// Calculate scale
const qint8_t scale = calculate_avg_scale_q8(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y, fixed_point_position);
const qint8x8_t scale_vec = vdup_n_qs8(scale);
// Perform pooling
const qint8x16_t sum_data = vqaddq_qs8(top_data, bottom_data);
lower_res = vqmul_qs8(vpadd_s8(vget_low_s8(sum_data), vget_high_s8(sum_data)), scale_vec, fixed_point_position);
if(pool_stride_x == 1)
{
const qint8x16_t sum_data_shifted = vextq_s8(sum_data, sum_data, 1);
upper_res = vqmul_qs8(vpadd_s8(vget_low_s8(sum_data_shifted), vget_high_s8(sum_data_shifted)), scale_vec, fixed_point_position);
}
}
else
{
const qint8x16_t max_data = vmaxq_s8(top_data, bottom_data);
lower_res = vpmax_s8(vget_low_s8(max_data), vget_high_s8(max_data));
if(pool_stride_x == 1)
{
const qint8x16_t max_data_shifted = vextq_s8(max_data, max_data, 1);
upper_res = vpmax_s8(vget_low_s8(max_data_shifted), vget_high_s8(max_data_shifted));
}
}
if(pool_stride_x == 1)
{
const qint8x8x2_t res = { { lower_res, upper_res } };
vst2_s8(reinterpret_cast<qint8_t *>(output.ptr()), res);
}
else
{
vst1_qs8(reinterpret_cast<qint8_t *>(output.ptr()), lower_res);
}
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling2_qasymm8(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_top_ptr + input.offset()));
const auto bottom_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_bottom_ptr + input.offset()));
uint8x8_t lower_res = {};
uint8x8_t upper_res = {};
if(pooling_type != PoolingType::MAX)
{
const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } };
const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } };
// Add rows
const uint16x8x2_t vrsum =
{
{
vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]),
vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]),
}
};
// Pair-wise add row data
const uint16x4x2_t vpsum =
{
{
vpadd_u16(vget_low_u16(vrsum.val[0]), vget_high_u16(vrsum.val[0])),
vpadd_u16(vget_low_u16(vrsum.val[1]), vget_high_u16(vrsum.val[1])),
}
};
uint16x8_t res_lower = vcombine_u16(vpsum.val[0], vpsum.val[1]);
// Scale lower result
scale_vector_s16x8<exclude_padding>(res_lower, id, 0, scale_step_x,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
lower_res = vmovn_u16(res_lower);
// Compute upper result for stride_x == 1
if(pool_stride_x == 1)
{
// Shifted row sum
const uint16x8x2_t vrsum_shifted =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 1),
vextq_u16(vrsum.val[1], vrsum.val[1], 1)
}
};
// Pair-wise add shifted row
const uint16x4x2_t vpsum_shifted =
{
{
vpadd_u16(vget_low_u16(vrsum_shifted.val[0]), vget_high_u16(vrsum_shifted.val[0])),
vpadd_u16(vget_low_u16(vrsum_shifted.val[1]), vget_high_u16(vrsum_shifted.val[1])),
}
};
uint16x8_t res_upper = vcombine_u16(vpsum_shifted.val[0], vpsum_shifted.val[1]);
// Scale lower result
scale_vector_s16x8<exclude_padding>(res_upper, id, 1, 2,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
upper_res = vmovn_u16(res_upper);
}
}
else
{
const uint8x16_t max_data = vmaxq_u8(top_data, bottom_data);
lower_res = vpmax_u8(vget_low_u8(max_data), vget_high_u8(max_data));
if(pool_stride_x == 1)
{
const uint8x16_t max_data_shifted = vextq_u8(max_data, max_data, 1);
upper_res = vpmax_u8(vget_low_u8(max_data_shifted), vget_high_u8(max_data_shifted));
}
}
// Store result
if(pool_stride_x == 1)
{
const uint8x8x2_t res = { { lower_res, upper_res } };
vst2_u8(reinterpret_cast<uint8_t *>(output.ptr()), res);
}
else
{
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr()), lower_res);
}
},
input, output);
}
template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling2_q16(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int fixed_point_position = _input->info()->fixed_point_position();
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + pool_pad_right;
const int upper_bound_h = _input->info()->dimension(1) + pool_pad_bottom;
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_qs16(reinterpret_cast<const qint16_t *>(input_top_ptr + input.offset()));
const auto bottom_data = vld1q_qs16(reinterpret_cast<const qint16_t *>(input_bottom_ptr + input.offset()));
qint16x4_t lower_res = {};
qint16x4_t upper_res = {};
if(pooling_type == PoolingType::AVG)
{
// Calculate scale
const qint16_t scale = calculate_avg_scale_q16(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y, fixed_point_position);
const qint16x4_t scale_vec = vdup_n_qs16(scale);
// Perform pooling
const qint16x8_t sum_data = vqaddq_qs16(top_data, bottom_data);
lower_res = vqmul_qs16(vpadd_s16(vget_low_s16(sum_data), vget_high_s16(sum_data)), scale_vec, fixed_point_position);
if(pool_stride_x == 1)
{
const qint16x8_t sum_data_shifted = vextq_s16(sum_data, sum_data, 1);
upper_res = vqmul_qs16(vpadd_s16(vget_low_s16(sum_data_shifted), vget_high_s16(sum_data_shifted)), scale_vec, fixed_point_position);
}
}
else
{
const qint16x8_t max_data = vmaxq_s16(top_data, bottom_data);
lower_res = vpmax_s16(vget_low_s16(max_data), vget_high_s16(max_data));
if(pool_stride_x == 1)
{
const qint16x8_t max_data_shifted = vextq_s16(max_data, max_data, 1);
upper_res = vpmax_s16(vget_low_s16(max_data_shifted), vget_high_s16(max_data_shifted));
}
}
if(pool_stride_x == 1)
{
const qint16x4x2_t res = { { lower_res, upper_res } };
vst2_s16(reinterpret_cast<qint16_t *>(output.ptr()), res);
}
else
{
vst1_qs16(reinterpret_cast<qint16_t *>(output.ptr()), lower_res);
}
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling3_f16(const Window &window_input, const Window &window)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(input_middle_ptr + input.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
middle_data = vmul_f16(middle_data, middle_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
// Perform pooling
const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
res = vmul_f16(vpadd_f16(res, res), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
res = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
res = vpmax_f16(res, res);
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
*(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling2_f16(const Window &window_input, const Window &window)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x, pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
auto top_data = vld2q_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
auto bottom_data = vld2q_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x8_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data.val[0] = vmulq_f16(top_data.val[0], top_data.val[0]);
top_data.val[1] = vmulq_f16(top_data.val[1], top_data.val[1]);
bottom_data.val[0] = vmulq_f16(bottom_data.val[0], bottom_data.val[0]);
bottom_data.val[1] = vmulq_f16(bottom_data.val[1], bottom_data.val[1]);
}
if(pooling_type != PoolingType::MAX)
{
const float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x8_t scale_v = vdupq_n_f16(scale);
res = vmulq_f16(scale_v, vaddq_f16(bottom_data.val[1], vaddq_f16(bottom_data.val[0], vaddq_f16(top_data.val[0], top_data.val[1]))));
}
else
{
res = vmaxq_f16(bottom_data.val[1], vmaxq_f16(bottom_data.val[0], vmaxq_f16(top_data.val[0], top_data.val[1])));
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinvq_f16(vinvsqrtq_f16(res));
}
// Store result
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), res);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling2_f32(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t top_data = vld1_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
float32x2_t bottom_data = vld1_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f32(top_data, top_data);
bottom_data = vmul_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
}
else
{
const float32x2_t max_data = vmax_f32(top_data, bottom_data);
res = vpmax_f32(max_data, max_data);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling3_q8(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int fixed_point_position = _input->info()->fixed_point_position();
constexpr int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + pool_pad_right;
const int upper_bound_h = _input->info()->dimension(1) + pool_pad_bottom;
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_top_ptr + input.offset()));
const auto middle_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_middle_ptr + input.offset()));
const auto bottom_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_bottom_ptr + input.offset()));
qint8x8_t res = {};
if(pooling_type == PoolingType::AVG)
{
// Calculate scale
const qint8_t scale = calculate_avg_scale_q8(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y, fixed_point_position);
// Perform pooling for stride 2
const qint8x16_t sum_data = vqaddq_qs8(vqaddq_qs8(top_data, bottom_data), middle_data);
const qint8x16_t sum_data2 = vextq_s8(sum_data, sum_data, 1);
const qint8x16_t sum_data3 = vextq_s8(sum_data, sum_data, 2);
const qint8x16_t final_sum = vqaddq_qs8(vqaddq_qs8(sum_data, sum_data2), sum_data3);
if(pool_stride_x == 2)
{
const qint8x8x2_t table = { { vget_low_s8(final_sum), vget_high_s8(final_sum) } };
static const qint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
const qint8x8_t scale_vec = vdup_n_qs8(scale);
res = vtbl2_s8(table, lookup_val);
res = vqmul_qs8(res, scale_vec, fixed_point_position);
vst1_qs8(reinterpret_cast<qint8_t *>(output.ptr()), res);
}
else
{
const qint8x16_t scale_vec = vdupq_n_qs8(scale);
vst1q_qs8(reinterpret_cast<qint8_t *>(output.ptr()), vqmulq_qs8(final_sum, scale_vec, fixed_point_position));
}
}
else
{
const qint8x16_t max_data = vmaxq_s8(vmaxq_s8(top_data, bottom_data), middle_data);
const qint8x16_t max_data2 = vextq_s8(max_data, max_data, 1);
const qint8x16_t max_data3 = vextq_s8(max_data, max_data, 2);
const qint8x16_t final_max = vmaxq_s8(vmaxq_s8(max_data, max_data2), max_data3);
if(pool_stride_x == 2)
{
const qint8x8x2_t table = { { vget_low_s8(final_max), vget_high_s8(final_max) } };
static const qint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
res = vtbl2_s8(table, lookup_val);
vst1_qs8(reinterpret_cast<qint8_t *>(output.ptr()), res);
}
else
{
vst1q_qs8(reinterpret_cast<qint8_t *>(output.ptr()), final_max);
}
}
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling3_qasymm8(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_top_ptr + input.offset()));
const auto middle_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_middle_ptr + input.offset()));
const auto bottom_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_bottom_ptr + input.offset()));
if(pooling_type == PoolingType::AVG)
{
// Convert data to u16
const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } };
const uint16x8x2_t middle_data_u16 = { { vmovl_u8(vget_low_u8(middle_data)), vmovl_u8(vget_high_u8(middle_data)) } };
const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } };
// Calculate row sums
const uint16x8x2_t vrsum =
{
{
vaddq_u16(vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]), middle_data_u16.val[0]),
vaddq_u16(vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]), middle_data_u16.val[1]),
}
};
const uint16x8x2_t vrsum_shifted_1 =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 1),
vextq_u16(vrsum.val[1], vrsum.val[1], 1)
}
};
const uint16x8x2_t vrsum_shifted_2 =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 2),
vextq_u16(vrsum.val[1], vrsum.val[1], 2)
}
};
// Calculate final sum
uint16x8x2_t final_sum =
{
{
vaddq_u16(vaddq_u16(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
vaddq_u16(vaddq_u16(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
}
};
if(pool_stride_x == 2)
{
uint16x8_t res =
{
vgetq_lane_u16(final_sum.val[0], 0),
vgetq_lane_u16(final_sum.val[0], 2),
vgetq_lane_u16(final_sum.val[0], 4),
vgetq_lane_u16(final_sum.val[0], 6),
vgetq_lane_u16(final_sum.val[1], 0),
vgetq_lane_u16(final_sum.val[1], 2),
vgetq_lane_u16(final_sum.val[1], 4),
vgetq_lane_u16(final_sum.val[1], 6),
};
scale_vector_s16x8<exclude_padding>(res, id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr()), vmovn_u16(res));
}
else
{
// Scale lower result
scale_vector_s16x8<exclude_padding>(final_sum.val[0], id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Scale lower result
scale_vector_s16x8<exclude_padding>(final_sum.val[1], id, 8, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const uint8x16_t res = vcombine_u8(vmovn_u16(final_sum.val[0]), vmovn_u16(final_sum.val[1]));
vst1q_u8(reinterpret_cast<uint8_t *>(output.ptr()), res);
}
}
else
{
const uint8x16_t max_data = vmaxq_u8(vmaxq_u8(top_data, bottom_data), middle_data);
const uint8x16_t max_data_shift1 = vextq_u8(max_data, max_data, 1);
const uint8x16_t max_data_shift2 = vextq_u8(max_data, max_data, 2);
const uint8x16_t final_max = vmaxq_u8(vmaxq_u8(max_data, max_data_shift1), max_data_shift2);
if(pool_stride_x == 2)
{
const uint8x8x2_t table = { { vget_low_u8(final_max), vget_high_u8(final_max) } };
static const uint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
const uint8x8_t res = vtbl2_u8(table, lookup_val);
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr()), res);
}
else
{
vst1q_u8(reinterpret_cast<uint8_t *>(output.ptr()), final_max);
}
}
},
input, output);
}
template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling3_q16(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int fixed_point_position = _input->info()->fixed_point_position();
constexpr int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + pool_pad_right;
const int upper_bound_h = _input->info()->dimension(1) + pool_pad_bottom;
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_qs16(reinterpret_cast<const qint16_t *>(input_top_ptr + input.offset()));
const auto middle_data = vld1q_qs16(reinterpret_cast<const qint16_t *>(input_middle_ptr + input.offset()));
const auto bottom_data = vld1q_qs16(reinterpret_cast<const qint16_t *>(input_bottom_ptr + input.offset()));
if(pooling_type == PoolingType::AVG)
{
// Calculate scale
const qint16_t scale = calculate_avg_scale_q16(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y, fixed_point_position);
// Perform pooling for stride 2
const qint16x8_t sum_data = vqaddq_qs16(vqaddq_qs16(top_data, bottom_data), middle_data);
const qint16x8_t sum_data2 = vextq_s16(sum_data, sum_data, 1);
const qint16x8_t sum_data3 = vextq_s16(sum_data, sum_data, 2);
const qint16x8_t final_sum = vqaddq_qs16(vqaddq_qs16(sum_data, sum_data2), sum_data3);
if(pool_stride_x == 2)
{
const qint16x4_t tmp = { vgetq_lane_s16(final_sum, 0), vgetq_lane_s16(final_sum, 2), vgetq_lane_s16(final_sum, 4), vgetq_lane_s16(final_sum, 6) };
const qint16x4_t scale_vec = vdup_n_qs16(scale);
vst1_qs16(reinterpret_cast<qint16_t *>(output.ptr()), vqmul_qs16(tmp, scale_vec, fixed_point_position));
}
else
{
const qint16x8_t scale_vec = vdupq_n_qs16(scale);
vst1q_qs16(reinterpret_cast<qint16_t *>(output.ptr()), vqmulq_qs16(final_sum, scale_vec, fixed_point_position));
}
}
else
{
const qint16x8_t max_data = vmaxq_s16(vmaxq_s16(top_data, bottom_data), middle_data);
const qint16x8_t max_data2 = vextq_s16(max_data, max_data, 1);
const qint16x8_t max_data3 = vextq_s16(max_data, max_data, 2);
const qint16x8_t final_max = vmaxq_s16(vmaxq_s16(max_data, max_data2), max_data3);
if(pool_stride_x == 2)
{
const qint16x4_t tmp = { vgetq_lane_s16(final_max, 0), vgetq_lane_s16(final_max, 2), vgetq_lane_s16(final_max, 4), vgetq_lane_s16(final_max, 6) };
vst1_qs16(reinterpret_cast<qint16_t *>(output.ptr()), tmp);
}
else
{
vst1q_qs16(reinterpret_cast<qint16_t *>(output.ptr()), final_max);
}
}
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling3_f32(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x4_t top_data = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmulq_f32(top_data, top_data);
middle_data = vmulq_f32(middle_data, middle_data);
bottom_data = vmulq_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::pooling7_f32(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 7;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
std::array<const uint8_t *, pool_size> input_ptrs{ {} };
for(int i = 0; i < pool_size; ++i)
{
input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t res = {};
float final_res = 0.f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
for(int i = 1; i < pool_size; ++i)
{
data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
sum_data = vaddq_f32(sum_data, data.val[0]);
sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
}
res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
for(int i = 1; i < pool_size; ++i)
{
const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
max_data = vmax2q_f32(max_data, data);
}
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::poolingN_f32(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size();
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float res = 0.0f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
float32x4_t vres = vdupq_n_f32(0.0f);
for(int y = 0; y < pool_size; ++y)
{
int x = 0;
for(; x <= (pool_size - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
// Leftover for loop
for(; x < pool_size; ++x)
{
float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res += vaddvq_f32(vres);
#else // __aarch64__
// Reduction
float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpadd_f32(tmp, tmp);
res += vget_lane_f32(tmp, 0);
#endif // __aarch64__
// Divide by scale
res *= scale;
}
else
{
float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::min());
res = std::numeric_limits<float>::min();
for(int y = 0; y < pool_size; ++y)
{
int x = 0;
for(; x <= (pool_size - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
vres = vmaxq_f32(vres, data);
}
// Leftover for loop
for(; x < pool_size; ++x)
{
const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
res = std::max(res, data);
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res = std::max(vmaxvq_f32(vres), res);
#else // __aarch64__
float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpmax_f32(tmp, tmp);
res = std::max(res, vget_lane_f32(tmp, 0));
#endif // __aarch64__
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = res;
},
input, output);
}
template <PoolingType pooling_type, bool exclude_padding>
void NEPoolingLayerKernel::poolingN_qasymm8(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size();
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
uint8_t res = 0;
if(pooling_type != PoolingType::MAX)
{
uint32x4_t vres = vdupq_n_u32(0);
uint32_t sres = 0;
// Calculate scale
const float scale = calculate_avg_scale<exclude_padding>(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size; ++y)
{
int x = 0;
for(; x <= (pool_size - 8); x += 8)
{
const uint8x8_t data = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
const uint16x8_t data_u16 = vmovl_u8(data);
vres = vaddq_u32(vres, vaddl_u16(vget_high_u16(data_u16), vget_low_u16(data_u16)));
}
// Leftover for loop
for(; x < pool_size; ++x)
{
uint8_t data = *(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
sres += data;
}
}
// Reduction
const auto tmp = vpadd_u32(vget_high_u32(vres), vget_low_u32(vres));
sres += vget_lane_u32(tmp, 0) + vget_lane_u32(tmp, 1);
// Divide by scale
res = static_cast<uint8_t>(support::cpp11::round(sres * scale));
}
else
{
uint8x8_t vres = vdup_n_u8(0);
res = 0;
for(int y = 0; y < pool_size; ++y)
{
int x = 0;
for(; x <= (pool_size - 8); x += 8)
{
const uint8x8_t data = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
vres = vmax_u8(vres, data);
}
// Leftover for loop
for(; x < pool_size; ++x)
{
const uint8_t data = *(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
res = std::max(res, data);
}
}
// Reduce max
vres = vpmax_u8(vres, vres);
vres = vpmax_u8(vres, vres);
vres = vpmax_u8(vres, vres);
// Get max value
res = std::max(res, vget_lane_u8(vres, 0));
}
// Store result
*(reinterpret_cast<uint8_t *>(output.ptr())) = res;
},
input, output);
}
Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
unsigned int num_elems_processed_per_iteration = 0;
BorderSize border_size(0);
const bool is_global_pooling = pool_info.is_global_pooling();
const unsigned int pool_size = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size();
// Validate pool info befor calling scaled_dimensions
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(input, pool_info, pool_size));
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
input->dimension(1),
pool_size,
pool_size,
pool_info.pad_stride_info());
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h, pool_size));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h, pool_size).first);
return Status{};
}
void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
const unsigned int pool_stride_x = _pool_info.pad_stride_info().stride().first;
const unsigned int pool_stride_y = _pool_info.pad_stride_info().stride().second;
const unsigned int pool_size = _pool_info.pool_size();
// Set step for input in x and y direction for the input
Window window_input(window);
unsigned int window_x_inc = 0;
switch(_input->info()->data_type())
{
case DataType::QS8:
case DataType::QS16:
case DataType::F16:
{
window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
break;
}
case DataType::QASYMM8:
{
window_x_inc = pool_stride_x;
if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
{
window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
}
break;
}
case DataType::F32:
{
window_x_inc = pool_stride_x;
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
// Run function
(this->*_func)(window_input, window);
}