blob: a715b9d3eeb0c0bbffb34e5da61eef5803a28d95 [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/SVEMath.h"
#include <cmath>
#include <cstddef>
#if defined(ENABLE_SVE)
#include <arm_sve.h>
namespace arm_compute
{
namespace cpu
{
void fp16_sve_batch_normalization(ITensor *src, ITensor *dst, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo &act_info, const Window &window)
{
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const auto input_mean = reinterpret_cast<const float16_t *>(mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float16_t *>(var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (gamma != nullptr) ? reinterpret_cast<const float16_t *>(gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (beta != nullptr) ? reinterpret_cast<const float16_t *>(beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto epsilon_vec = svdup_n_f16(epsilon);
const auto const_1 = svdup_n_f16(1.f);
const auto const_0 = svdup_n_f16(0.f);
const auto va = svdup_n_f16(act_info.a());
const auto vb = svdup_n_f16(act_info.b());
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
svbool_t pg = svwhilelt_b16(x, window_end_x);
do
{
// Conctruct vectors
const auto mean_vec = svld1_f16(pg, input_mean + x);
const auto var_vec = svld1_f16(pg, input_var + x);
const auto gamma_vec = (input_gamma != nullptr) ? svld1_f16(pg, input_gamma + x) : const_1;
const auto beta_vec = (input_beta != nullptr) ? svld1_f16(pg, input_beta + x) : const_0;
// Calculate denominator
const auto tmp = svadd_f16_z(pg, var_vec, epsilon_vec);
auto denominator = svrsqrte_f16(tmp);
denominator = svmul_f16_z(pg, svrsqrts_f16(svmul_f16_z(pg, tmp, denominator), denominator), denominator);
denominator = svmul_f16_z(pg, svrsqrts_f16(svmul_f16_z(pg, tmp, denominator), denominator), denominator);
// Calculate x bar
const auto numerator = svsub_f16_z(pg, svld1_f16(pg, input_ptr + x), mean_vec);
const auto x_bar = svmul_f16_z(pg, numerator, denominator);
auto res = svmla_f16_z(pg, beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(act_info.enabled())
{
if(act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU)
{
res = svmax_f16_z(pg, const_0, res);
}
else if(act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
{
res = svmin_f16_z(pg, va, svmax_f16_z(pg, const_0, res));
}
else if(act_info.activation() == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
{
res = svmin_f16_z(pg, va, svmax_f16_z(pg, vb, res));
}
}
// Store results
svst1_f16(pg, output_ptr + x, res);
x += svcntw();
pg = svwhilelt_b16(x, window_end_x);
}
while(svptest_any(svptrue_b16(), pg));
},
input, output);
}
} // namespace cpu
} // namespace arm_compute
#endif // ENABLE_SVE