blob: 6c5524e284c8203a8b3ff4f14e8571d4cc9ee1e0 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H
#define SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H
#if defined(__ARM_FEATURE_SVE2)
#include "src/core/NEON/wrapper/svtraits.h"
#include "src/core/cpu/kernels/elementwise/sve/elementwise_list.h"
namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::wrapper;
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct QuantizedLoopArguments
{
OperatorType op;
const InputScalarType *input1_ptr;
const InputScalarType *input2_ptr;
OutputScalarType *output_ptr;
const svint32_t &in1_offset;
const svint32_t &in2_offset;
const svint32_t &out_offset;
const svfloat32_t &in1_scale;
const svfloat32_t &in2_scale;
const svfloat32_t &out_scale;
};
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
struct BroadcastQuantizedLoopArguments
{
OperatorType op;
const InputScalarType *input1_ptr;
float broadcast_value;
OutputScalarType *output_ptr;
bool reorder;
const svint32_t &in1_offset;
const svint32_t &out_offset;
const svfloat32_t &in1_scale;
const svfloat32_t &out_scale;
};
svfloat32x4_t load_quantized(const int8_t *ptr, svbool_t pg, const svint32_t &offset, const svfloat32_t &scale)
{
auto x = svld1(pg, ptr);
const auto widened = svcreate4(
svmovlb(svmovlb(x)),
svmovlt(svmovlb(x)),
svmovlb(svmovlt(x)),
svmovlt(svmovlt(x)));
pg = svptrue_b8();
return svcreate4(
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 0), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 1), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 2), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svget4(widened, 3), offset)), scale));
}
svfloat32x4_t load_quantized(const uint8_t *ptr, svbool_t pg, const svint32_t &offset, const svfloat32_t &scale)
{
auto x = svld1(pg, ptr);
//vprint(x);
const auto widened = svcreate4(
svmovlb(svmovlb(x)),
svmovlt(svmovlb(x)),
svmovlb(svmovlt(x)),
svmovlt(svmovlt(x)));
pg = svptrue_b8();
return svcreate4(
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 0)), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 1)), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 2)), offset)), scale),
svmul_z(pg, svcvt_f32_z(pg, svsub_z(pg, svreinterpret_s32(svget4(widened, 3)), offset)), scale));
}
void store_quantized(uint8_t *ptr, svbool_t pg, svfloat32x4_t data, const svint32_t &offset, const svfloat32_t &inv_scale)
{
const auto quantized = svcreate4(
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 0), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 1), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 2), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 3), inv_scale))), offset));
const auto narrowed_bottom = svqxtunt(svqxtunb(svget4(quantized, 0)), svget4(quantized, 1));
const auto narrowed_top = svqxtunt(svqxtunb(svget4(quantized, 2)), svget4(quantized, 3));
const auto narrowed = svqxtnt(svqxtnb(narrowed_bottom), narrowed_top);
svst1(pg, ptr, narrowed);
}
void store_quantized(int8_t *ptr, svbool_t pg, svfloat32x4_t data, const svint32_t &offset, const svfloat32_t &inv_scale)
{
const auto quantized = svcreate4(
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 0), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 1), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 2), inv_scale))), offset),
svadd_z(pg, svcvt_s32_z(pg, svrinta_z(pg, svmul_z(pg, svget4(data, 3), inv_scale))), offset));
const auto narrowed_bottom = svqxtnt(svqxtnb(svget4(quantized, 0)), svget4(quantized, 1));
const auto narrowed_top = svqxtnt(svqxtnb(svget4(quantized, 2)), svget4(quantized, 3));
const auto narrowed = svqxtnt(svqxtnb(narrowed_bottom), narrowed_top);
svst1(pg, ptr, narrowed);
}
template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_quantized_loop(svbool_t pg, const QuantizedLoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
const auto in2 = load_quantized(args.input2_ptr, pg, args.in2_offset, args.in2_scale);
const auto result = svcreate4(
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 0), svget4(in2, 0), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 1), svget4(in2, 1), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 2), svget4(in2, 2), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(in1, 3), svget4(in2, 3), args.op));
store_quantized(args.output_ptr, pg, result, args.out_offset, args.out_scale);
}
template <typename InputScalarType, typename OutputScalarType>
inline void arithmetic_op_broadcast_quantized_loop(svbool_t pg, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, ArithmeticOperation> &args)
{
const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
const auto in2 = svcreate4(
svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value));
const auto &af = args.reorder ? in2 : in1;
const auto &bf = args.reorder ? in1 : in2;
const auto result = svcreate4(
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 0), svget4(bf, 0), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 1), svget4(bf, 1), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 2), svget4(bf, 2), args.op),
elementwise_arithmetic_op<svfloat32_t>(pg, svget4(af, 3), svget4(bf, 3), args.op));
store_quantized(args.output_ptr, pg, result, args.out_offset, args.out_scale);
}
template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_quantized_loop(svbool_t pg, const QuantizedLoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
const auto in2 = load_quantized(args.input2_ptr, pg, args.in2_offset, args.in2_scale);
using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;
const auto result = svcreate4(
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 0), svget4(in2, 0), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 1), svget4(in2, 1), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 2), svget4(in2, 2), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(in1, 3), svget4(in2, 3), args.op));
const auto zipped_bottom = svzip1(svget4(result, 0), svget4(result, 1));
const auto zipped_top = svzip1(svget4(result, 2), svget4(result, 3));
const auto zipped = svzip1(zipped_bottom, zipped_top);
svst1(pg, args.output_ptr, zipped);
}
template <typename InputScalarType, typename OutputScalarType>
inline void comparison_op_broadcast_quantized_loop(svbool_t pg, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, ComparisonOperation> &args)
{
const auto in1 = load_quantized(args.input1_ptr, pg, args.in1_offset, args.in1_scale);
const auto in2 = svcreate4(
svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value), svdup_n(args.broadcast_value));
const auto &af = args.reorder ? in2 : in1;
const auto &bf = args.reorder ? in1 : in2;
using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;
const auto result = svcreate4(
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 0), svget4(bf, 0), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 1), svget4(bf, 1), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 2), svget4(bf, 2), args.op),
elementwise_comparison_op<svfloat32_t, OutputVectorType>(pg, svget4(af, 3), svget4(bf, 3), args.op));
const auto zipped_bottom = svzip1(svget4(result, 0), svget4(result, 1));
const auto zipped_top = svzip1(svget4(result, 2), svget4(result, 3));
const auto zipped = svzip1(zipped_bottom, zipped_top);
svst1(pg, args.output_ptr, zipped);
}
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using LoopQuantizedFuncType = void (*)(svbool_t, const QuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType> &);
template <typename InputScalarType, typename OutputScalarType, typename OperatorType>
using BroadcastQuantizedLoopFuncType = void (*)(svbool_t, const BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType> &);
template <typename InputVectorType, typename OutputVectorType, typename OperatorType,
typename InputScalarType = typename wrapper::sve_scalar<InputVectorType>::type,
typename OutputScalarType = typename wrapper::sve_scalar<OutputVectorType>::type>
void elementwise_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
OperatorType op,
LoopQuantizedFuncType<InputScalarType, OutputScalarType, OperatorType> func,
BroadcastQuantizedLoopFuncType<InputScalarType, OutputScalarType, OperatorType> broadcast_func)
{
const auto all_true_pg = wrapper::svptrue<InputScalarType>();
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const auto output_voffset = svdup_n(out->info()->quantization_info().uniform().offset);
const auto output_vscale = svdup_n(1.f / out->info()->quantization_info().uniform().scale);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const auto non_broadcast_qinfo = is_broadcast_input_2 ? in1->info()->quantization_info() : in2->info()->quantization_info();
const auto broadcast_qinfo = is_broadcast_input_2 ? in2->info()->quantization_info() : in1->info()->quantization_info();
const auto non_broadcast_voffset = svdup_n(non_broadcast_qinfo.uniform().offset);
const auto non_broadcast_vscale = svdup_n(non_broadcast_qinfo.uniform().scale);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
int x = window_start_x;
svbool_t pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
do
{
const auto args = BroadcastQuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType>
{
op,
non_broadcast_input_ptr + x,
Qasymm8QuantizationHelper<InputScalarType>::dequantize(broadcast_value, broadcast_qinfo),
output_ptr + x,
!is_broadcast_input_2,
non_broadcast_voffset, output_voffset,
non_broadcast_vscale, output_vscale
};
broadcast_func(pg, args);
x += wrapper::svcnt<InputScalarType>();
pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
const auto in1_voffset = svdup_n(in1->info()->quantization_info().uniform().offset);
const auto in1_vscale = svdup_n(in1->info()->quantization_info().uniform().scale);
const auto in2_voffset = svdup_n(in2->info()->quantization_info().uniform().offset);
const auto in2_vscale = svdup_n(in2->info()->quantization_info().uniform().scale);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = window_start_x;
svbool_t pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
do
{
const auto args = QuantizedLoopArguments<InputScalarType, OutputScalarType, OperatorType>
{
op,
input1_ptr + x,
input2_ptr + x,
output_ptr + x,
in1_voffset, in2_voffset, output_voffset,
in1_vscale, in2_vscale, output_vscale
};
func(pg, args);
x += wrapper::svcnt<InputScalarType>();
pg = wrapper::svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
input1, input2, output);
}
}
template <ArithmeticOperation op, typename ScalarType>
void elementwise_arithmetic_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
using VectorType = typename wrapper::traits::sve_vector<ScalarType>::type;
elementwise_quantized_op<VectorType, VectorType, ArithmeticOperation>(in1, in2, out, window, op,
&arithmetic_op_quantized_loop<ScalarType, ScalarType>,
&arithmetic_op_broadcast_quantized_loop<ScalarType, ScalarType>);
}
template <ComparisonOperation op, typename InputScalarType, typename OutputScalarType = uint8_t>
void elementwise_comparison_quantized_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width");
using InputVectorType = typename wrapper::traits::sve_vector<InputScalarType>::type;
using OutputVectorType = typename wrapper::traits::sve_vector<OutputScalarType>::type;
elementwise_quantized_op<InputVectorType, OutputVectorType, ComparisonOperation>(in1, in2, out, window, op,
&comparison_op_quantized_loop<InputScalarType, OutputScalarType>,
&comparison_op_broadcast_quantized_loop<InputScalarType, OutputScalarType>);
}
} // namespace cpu
} // namespace arm_compute
#endif /* defined(__ARM_FEATURE_SVE2) */
#endif /* SRC_CORE_SVE_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H */