blob: 15f54d17a51629e4c2d7ebd36ab20b8860da1e16 [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H
#define ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H
#include "src/core/CL/ICLKernel.h"
namespace arm_compute
{
class ICLTensor;
/** OpenCL kernel used to add the offset contribution after the matrix multiplication and perform the output stage.
*
* This kernel takes a final int32 accumulator value (the output of the matrix multiplication), adds to it the offset contribution
* of matrix A and matrix B and performs the output stage defined by the output_stage argument
*
* @note For quantized computations the output data type for auto-initialization must be passed as part of the @ref GEMMLowpOutputStageInfo.
*/
class CLGEMMLowpOffsetContributionOutputStageKernel : public ICLKernel
{
public:
/** Constructor */
CLGEMMLowpOffsetContributionOutputStageKernel();
/** Prevent instances of this class from being copied (As this class contains pointers)*/
CLGEMMLowpOffsetContributionOutputStageKernel(const CLGEMMLowpOffsetContributionOutputStageKernel &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers)*/
CLGEMMLowpOffsetContributionOutputStageKernel &operator=(const CLGEMMLowpOffsetContributionOutputStageKernel &) = delete;
/** Allow instances of this class to be moved */
CLGEMMLowpOffsetContributionOutputStageKernel(CLGEMMLowpOffsetContributionOutputStageKernel &&) = default;
/** Allow instances of this class to be moved */
CLGEMMLowpOffsetContributionOutputStageKernel &operator=(CLGEMMLowpOffsetContributionOutputStageKernel &&) = default;
/** Initialise the kernel's input and output.
*
* @param[in] mm_result Input tensor containing the result of the matrix multiplication. Data type supported: S32
* @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
* Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
* @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
* Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
* @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
* Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
* @param[out] output Output tensor. Data type supported: QASYMM8/QASYMM8_SIGNED.
* @param[in] k Number of matrix A columns or Matrix B rows
* @param[in] a_offset Offset to be added to each element of the matrix A.
* @param[in] b_offset Offset to be added to each element of the matrix B.
* @param[in] output_stage GEMMLowp output stage info
* @param[in] output_multipliers Output multipliers tensor. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
* @param[in] output_shifts Output shifts tensor. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
*/
void configure(const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output, int32_t k, int32_t a_offset, int32_t b_offset,
const GEMMLowpOutputStageInfo &output_stage, const ICLTensor *output_multipliers, const ICLTensor *output_shifts);
/** Initialise the kernel's input and output.
*
* @param[in] compile_context The compile context to be used.
* @param[in] mm_result Input tensor containing the result of the matrix multiplication. Data type supported: S32
* @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
* Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
* @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
* Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
* @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
* Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
* @param[out] output Output tensor. Data type supported: QASYMM8/QASYMM8_SIGNED.
* @param[in] k Number of matrix A columns or Matrix B rows
* @param[in] a_offset Offset to be added to each element of the matrix A.
* @param[in] b_offset Offset to be added to each element of the matrix B.
* @param[in] output_stage GEMMLowp output stage info
* @param[in] output_multipliers Output multipliers tensor. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
* @param[in] output_shifts Output shifts tensor. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *mm_result, const ICLTensor *vector_sum_col, const ICLTensor *vector_sum_row, const ICLTensor *bias, ICLTensor *output,
int32_t k,
int32_t a_offset, int32_t b_offset,
const GEMMLowpOutputStageInfo &output_stage, const ICLTensor *output_multipliers, const ICLTensor *output_shifts);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpOffsetContributionKernel
*
* @param[in] mm_result Input tensor containing the result of @ref CLGEMMLowpOffsetContributionKernel. Data type supported: S32
* @param[in] vector_sum_col Input row-vector of sums of all the entries in each column of matrix B.
* Note: vector_sum_col can be a nullptr in case a_offset = 0. Data type supported: same as @p mm_result
* @param[in] vector_sum_row Input row-vector of sums of all the entries in each row of matrix A.
* Note: vector_sum_row can be a nullptr in case b_offset = 0. Data type supported: same as @p mm_result
* @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the addition of biases is not required.
* Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
* @param[in] output Output tensor. Data type supported: QASYMM8/QASYMM8_SIGNED.
* @param[in] a_offset Offset to be added to each element of the matrix A.
* @param[in] b_offset Offset to be added to each element of the matrix B.
* @param[in] output_stage GEMMLowp output stage info
* @param[in] output_multipliers Output multipliers tensor info. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
* @param[in] output_shifts Output shifts tensor info. In case of per-channel quantization, the number of multipliers must be equal to the number of filters (OFM).
* Supported data types: S32
*
* @return a status
*/
static Status validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output, int32_t a_offset,
int32_t b_offset, const GEMMLowpOutputStageInfo &output_stage, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts);
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
private:
const ICLTensor *_mm_result;
const ICLTensor *_vector_sum_col;
const ICLTensor *_vector_sum_row;
const ICLTensor *_bias;
ICLTensor *_output;
const ICLTensor *_output_multipliers;
const ICLTensor *_output_shifts;
bool _is_quantized_per_channel;
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_CLGEMMLOWPOFFSETCONTRIBUTIONOUTPUTSTAGEKERNEL_H */