blob: c5524b1ccb6633f80df53ec75549699135d2e0bd [file] [log] [blame]
/*
* Copyright (c) 2016-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/runtime/CL/CLMemoryGroup.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
using namespace arm_compute;
CLTensorAllocator::CLTensorAllocator(CLTensor *owner)
: _associated_memory_group(nullptr), _buffer(), _mapping(nullptr), _owner(owner), _svm_memory()
{
}
CLTensorAllocator::~CLTensorAllocator()
{
_buffer = cl::Buffer();
}
uint8_t *CLTensorAllocator::data()
{
return _mapping;
}
const cl::Buffer &CLTensorAllocator::cl_data() const
{
return _buffer;
}
void *SVMMemory::allocate(cl_context context, size_t size, cl_svm_mem_flags flags, cl_uint alignment)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(context);
ARM_COMPUTE_ERROR_ON(size == 0);
ARM_COMPUTE_ERROR_ON(_ptr != nullptr);
ARM_COMPUTE_ERROR_ON(size > CL_DEVICE_MAX_MEM_ALLOC_SIZE);
_ptr = clSVMAlloc(context, flags, size, alignment);
if(_ptr != nullptr)
{
_size = size;
_fine_grain = static_cast<bool>(flags & CL_MEM_SVM_FINE_GRAIN_BUFFER);
}
return _ptr;
}
void *CLTensorAllocator::svm_ptr()
{
return _svm_memory.ptr();
}
void CLTensorAllocator::allocate()
{
if(_associated_memory_group == nullptr)
{
ARM_COMPUTE_ERROR_ON(_buffer.get() != nullptr);
if(_svm_memory.allocate(CLScheduler::get().context()(), CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER, info().total_size(), 0) == nullptr)
{
// try at coarse grain svm memory
_svm_memory.allocate(CLScheduler::get().context()(), CL_MEM_READ_WRITE, info().total_size(), 0);
}
if(_svm_memory.ptr() != nullptr)
{
_buffer = cl::Buffer(CLScheduler::get().context(), CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, info().total_size(), _svm_memory.ptr());
}
else
{
_buffer = cl::Buffer(CLScheduler::get().context(), CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_WRITE, info().total_size());
}
}
else
{
_associated_memory_group->finalize_memory(_owner, reinterpret_cast<void **>(&_buffer()), info().total_size());
}
info().set_is_resizable(false);
}
void CLTensorAllocator::free()
{
if(_associated_memory_group == nullptr)
{
_buffer = cl::Buffer();
if(_svm_memory.ptr() != nullptr)
{
clSVMFree(CLScheduler::get().context()(), _svm_memory.ptr());
}
info().set_is_resizable(true);
}
}
void CLTensorAllocator::set_associated_memory_group(CLMemoryGroup *associated_memory_group)
{
ARM_COMPUTE_ERROR_ON(associated_memory_group == nullptr);
ARM_COMPUTE_ERROR_ON(_associated_memory_group != nullptr);
ARM_COMPUTE_ERROR_ON(_buffer.get() != nullptr);
_associated_memory_group = associated_memory_group;
}
uint8_t *CLTensorAllocator::lock()
{
ARM_COMPUTE_ERROR_ON(_mapping != nullptr);
_mapping = map(CLScheduler::get().queue(), true);
return _mapping;
}
void CLTensorAllocator::unlock()
{
ARM_COMPUTE_ERROR_ON(_mapping == nullptr);
unmap(CLScheduler::get().queue(), _mapping);
_mapping = nullptr;
}
uint8_t *CLTensorAllocator::map(cl::CommandQueue &q, bool blocking)
{
const bool svm_mem = _svm_memory.ptr() != nullptr;
const bool fine_grain_svm = _svm_memory.fine_grain();
if(!svm_mem)
{
ARM_COMPUTE_ERROR_ON(_buffer.get() == nullptr);
return static_cast<uint8_t *>(q.enqueueMapBuffer(_buffer, blocking ? CL_TRUE : CL_FALSE, CL_MAP_READ | CL_MAP_WRITE, 0, info().total_size()));
}
else if(!fine_grain_svm)
{
const cl_int ret = clEnqueueSVMMap(q(), blocking ? CL_TRUE : CL_FALSE, CL_MAP_READ | CL_MAP_WRITE, _svm_memory.ptr(), _svm_memory.size(), 0, nullptr, nullptr);
ARM_COMPUTE_ERROR_ON(ret != CL_SUCCESS);
if(ret == CL_SUCCESS)
{
return reinterpret_cast<uint8_t *>(_svm_memory.ptr());
}
else
{
return nullptr;
}
}
else
{
if(blocking)
{
clFinish(q());
}
return reinterpret_cast<uint8_t *>(_svm_memory.ptr());
}
}
void CLTensorAllocator::unmap(cl::CommandQueue &q, uint8_t *mapping)
{
const bool svm_mem = _svm_memory.ptr() != nullptr;
const bool fine_grain_svm = _svm_memory.fine_grain();
if(!svm_mem)
{
ARM_COMPUTE_ERROR_ON(_buffer.get() == nullptr);
q.enqueueUnmapMemObject(_buffer, mapping);
}
else if(!fine_grain_svm)
{
clEnqueueSVMUnmap(q(), _svm_memory.ptr(), 0, nullptr, nullptr);
}
}