blob: a05d700c5efc6f976af03e7c59a3920ae1369f9a [file] [log] [blame]
/*
* Copyright (c) 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef __aarch64__
#include <arm_neon.h>
#if !defined(_WIN64) && !defined(__OpenBSD__)
#include <alloca.h>
#endif /* !defined(_WIN64) && !defined(__OpenBSD__) */
#include <cstring>
#include "transform.hpp"
#include "utils.hpp"
namespace arm_gemm {
namespace {
// Helper function to interleave a single 4x4 block of 32-bin values
// together.
// _full version doesn't need to worry about any padding.
static inline void transpose_block_32_full(const uint8_t * __restrict in_ptr0, const uint8_t * __restrict in_ptr1, const uint8_t * __restrict in_ptr2, const uint8_t * __restrict in_ptr3, uint8_t * __restrict out_ptr, long output_stride) {
uint32x4_t inputs[4];
uint32x4_t inters[4];
uint32x4_t outputs[4];
inputs[0] = vld1q_u32(reinterpret_cast<const uint32_t *>(in_ptr0));
inputs[1] = vld1q_u32(reinterpret_cast<const uint32_t *>(in_ptr1));
inputs[2] = vld1q_u32(reinterpret_cast<const uint32_t *>(in_ptr2));
inputs[3] = vld1q_u32(reinterpret_cast<const uint32_t *>(in_ptr3));
inters[0] = vzip1q_u32(inputs[0], inputs[2]);
inters[1] = vzip2q_u32(inputs[0], inputs[2]);
inters[2] = vzip1q_u32(inputs[1], inputs[3]);
inters[3] = vzip2q_u32(inputs[1], inputs[3]);
outputs[0] = vzip1q_u32(inters[0], inters[2]);
outputs[1] = vzip2q_u32(inters[0], inters[2]);
outputs[2] = vzip1q_u32(inters[1], inters[3]);
outputs[3] = vzip2q_u32(inters[1], inters[3]);
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr), outputs[0]);
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride), outputs[1]);
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride*2), outputs[2]);
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride*3), outputs[3]);
}
// _part version: Only read "bytes_in" bytes, not a full vector. Only write
// out 4-byte blocks that have some live content (if bytes_in is not a
// multiple of 4 there will some padding in each 4-block)
static inline void transpose_block_32_part(const uint8_t *in_ptr0, const uint8_t *in_ptr1, const uint8_t *in_ptr2, const uint8_t *in_ptr3, uint8_t *out_ptr, long bytes_in, long output_stride) {
uint32x4_t inputs[4];
uint32x4_t inters[4];
uint32x4_t outputs[4];
uint8_t scratch[16] = {0};
long num_outs = iceildiv<long>(bytes_in, 4);
memcpy(scratch, in_ptr0, bytes_in);
inputs[0] = vld1q_u32(reinterpret_cast<const uint32_t *>(scratch));
memcpy(scratch, in_ptr1, bytes_in);
inputs[1] = vld1q_u32(reinterpret_cast<const uint32_t *>(scratch));
memcpy(scratch, in_ptr2, bytes_in);
inputs[2] = vld1q_u32(reinterpret_cast<const uint32_t *>(scratch));
memcpy(scratch, in_ptr3, bytes_in);
inputs[3] = vld1q_u32(reinterpret_cast<const uint32_t *>(scratch));
inters[0] = vzip1q_u32(inputs[0], inputs[2]);
inters[1] = vzip2q_u32(inputs[0], inputs[2]);
inters[2] = vzip1q_u32(inputs[1], inputs[3]);
inters[3] = vzip2q_u32(inputs[1], inputs[3]);
outputs[0] = vzip1q_u32(inters[0], inters[2]);
outputs[1] = vzip2q_u32(inters[0], inters[2]);
outputs[2] = vzip1q_u32(inters[1], inters[3]);
outputs[3] = vzip2q_u32(inters[1], inters[3]);
do {
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr), outputs[0]);
if (num_outs < 2)
break;
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride), outputs[1]);
if (num_outs < 3)
break;
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride*2), outputs[2]);
if (num_outs < 4)
break;
vst1q_u32(reinterpret_cast<uint32_t *>(out_ptr + output_stride*3), outputs[3]);
} while (0);
}
template<unsigned N>
struct Unroll {
template<typename F>
static void run(F f) {
Unroll<N-1>::run(f);
f(N-1);
}
};
template<>
struct Unroll<0> {
template<typename F>
static void run(F) {
}
};
// Interleave some multiple of 4 rows together.
//
// The template parameter BLOCKS controls the size of the inner loop - each BLOCK is 4 rows.
// The function parameter interleave_multiple controls the number of times the inner loop is run.
// The total interleave depth for a given run is therefore BLOCKS * interleave_multiple * 4.
template<unsigned BLOCKS>
void a64_interleave_1x4(uint8_t *out, const uint8_t *in, long width, long in_stride, long height, long interleave_multiple) {
const long total_interleave_depth = BLOCKS * 4 * interleave_multiple;
constexpr long loop_interleave_depth = BLOCKS * 4;
uint8_t *pad_row = reinterpret_cast<uint8_t *>(alloca(width));
if (height % total_interleave_depth) {
memset(pad_row, 0, width);
}
// Outer loop: process blocks of total_interleave_depth rows at a time.
for (long y0_base=0; y0_base<height; y0_base+=total_interleave_depth) {
// Middle loop: process each "interlave_multiple" block of rows.
for (long block=0; block<interleave_multiple; block++) {
const long y0 = y0_base + (block * loop_interleave_depth);
uint8_t *out_ptr = out + (block * loop_interleave_depth * 4); // 4 is the blocking depth (we interleave 4 bytes at a time from each input)
// Create and set up input row pointers. The idea is that these
// should entirely fit in the register file, so we don't have to
// repeatedly load them (or perform the padding check)
const uint8_t *in_ptrs[loop_interleave_depth];
Unroll<loop_interleave_depth>::run( [&](unsigned y) {
in_ptrs[y] = (y+y0 < height) ? in + ((y+y0) * in_stride) : pad_row;
});
long bytes_left = width;
// Process full vectors using transpose_block_32_full()
while (bytes_left >= 16) { // 16 is the vector length in bytes
Unroll<BLOCKS>::run( [&](unsigned u) {
transpose_block_32_full(in_ptrs[u*4 + 0], in_ptrs[u*4 + 1], in_ptrs[u*4 + 2], in_ptrs[u*4 + 3],
out_ptr + 16*u, total_interleave_depth * 4); // 4 is the blocking depth
});
Unroll<loop_interleave_depth>::run( [&](unsigned y) {
in_ptrs[y] += 16; // 16 is the vector length in bytes
});
out_ptr += total_interleave_depth * 16; // 16 is the vector length in bytes
bytes_left -= 16; // 16 is the vector length in bytes
}
// Process any remaining bytes using transpose_block_32_part()
if (bytes_left) {
Unroll<BLOCKS>::run( [&](unsigned u) {
transpose_block_32_part(in_ptrs[u*4 + 0], in_ptrs[u*4 + 1], in_ptrs[u*4 + 2], in_ptrs[u*4 + 3],
out_ptr + 16*u, bytes_left, total_interleave_depth * 4);
});
}
}
// Update "out" pointer for next set of total_interleave_depth rows
out += total_interleave_depth * roundup<long>(width, 4);
}
}
} // anonymous namespace
template<>
void Transform<16, 4, false, VLType::None>(
uint8_t *out, const uint8_t *in, int stride, int y0, int ymax, int x0, int xmax)
{
a64_interleave_1x4<4>(
reinterpret_cast<uint8_t *>(out),
reinterpret_cast<const uint8_t *>(in + y0 * stride + x0),
(xmax - x0),
stride,
(ymax - y0),
1
);
}
template<>
void Transform<16, 4, false, VLType::None>(
int8_t *out, const int8_t *in, int stride, int y0, int ymax, int x0, int xmax)
{
a64_interleave_1x4<4>(
reinterpret_cast<uint8_t *>(out),
reinterpret_cast<const uint8_t *>(in + y0 * stride + x0),
(xmax - x0),
stride,
(ymax - y0),
1
);
}
template<>
void Transform<12, 1, false, VLType::None>(
float *out, const float *in, int stride, int y0, int ymax, int x0, int xmax)
{
a64_interleave_1x4<3>(
reinterpret_cast<uint8_t *>(out),
reinterpret_cast<const uint8_t *>(in + y0 * stride + x0),
(xmax - x0) * sizeof(float),
stride * sizeof(float),
(ymax - y0),
1
);
}
template<>
void Transform<16, 1, false, VLType::None>(
float *out, const float *in, int stride, int y0, int ymax, int x0, int xmax)
{
a64_interleave_1x4<4>(
reinterpret_cast<uint8_t *>(out),
reinterpret_cast<const uint8_t *>(in + y0 * stride + x0),
(xmax - x0) * sizeof(float),
stride * sizeof(float),
(ymax - y0),
1
);
}
template<>
void Transform<24, 1, false, VLType::None>(
float *out, const float *in, int stride, int y0, int ymax, int x0, int xmax)
{
a64_interleave_1x4<3>(
reinterpret_cast<uint8_t *>(out),
reinterpret_cast<const uint8_t *>(in + y0 * stride + x0),
(xmax - x0) * sizeof(float),
stride * sizeof(float),
(ymax - y0),
2
);
}
} // namespace arm_gemm
#endif // __aarch64__