blob: 9cfd59284c74ef75c19efe77c037bde742d30379 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_MODEL_OBJECTS_LENET5_H__
#define __ARM_COMPUTE_TEST_MODEL_OBJECTS_LENET5_H__
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/Utils.h"
#include <memory>
using namespace arm_compute;
using namespace arm_compute::test;
namespace arm_compute
{
namespace test
{
namespace networks
{
/** Lenet5 model object */
template <typename TensorType,
typename Accessor,
typename ActivationLayerFunction,
typename ConvolutionLayerFunction,
typename FullyConnectedLayerFunction,
typename PoolingLayerFunction,
typename SoftmaxLayerFunction>
class LeNet5Network
{
public:
/** Initialize the network.
*
* @param[in] batches Number of batches.
*/
void init(int batches)
{
_batches = batches;
// Initialize input, output, weights and biases
input.allocator()->init(TensorInfo(TensorShape(28U, 28U, 1U, _batches), 1, DataType::F32));
output.allocator()->init(TensorInfo(TensorShape(10U, _batches), 1, DataType::F32));
w[0].allocator()->init(TensorInfo(TensorShape(5U, 5U, 1U, 20U), 1, DataType::F32));
b[0].allocator()->init(TensorInfo(TensorShape(20U), 1, DataType::F32));
w[1].allocator()->init(TensorInfo(TensorShape(5U, 5U, 20U, 50U), 1, DataType::F32));
b[1].allocator()->init(TensorInfo(TensorShape(50U), 1, DataType::F32));
w[2].allocator()->init(TensorInfo(TensorShape(800U, 500U), 1, DataType::F32));
b[2].allocator()->init(TensorInfo(TensorShape(500U), 1, DataType::F32));
w[3].allocator()->init(TensorInfo(TensorShape(500U, 10U), 1, DataType::F32));
b[3].allocator()->init(TensorInfo(TensorShape(10U), 1, DataType::F32));
}
/** Build the model. */
void build()
{
// Initialize intermediate tensors
// Layer 1
conv1_out.allocator()->init(TensorInfo(TensorShape(24U, 24U, 20U, _batches), 1, DataType::F32));
pool1_out.allocator()->init(TensorInfo(TensorShape(12U, 12U, 20U, _batches), 1, DataType::F32));
// Layer 2
conv2_out.allocator()->init(TensorInfo(TensorShape(8U, 8U, 50U, _batches), 1, DataType::F32));
pool2_out.allocator()->init(TensorInfo(TensorShape(4U, 4U, 50U, _batches), 1, DataType::F32));
// Layer 3
fc1_out.allocator()->init(TensorInfo(TensorShape(500U, _batches), 1, DataType::F32));
act1_out.allocator()->init(TensorInfo(TensorShape(500U, _batches), 1, DataType::F32));
// Layer 6
fc2_out.allocator()->init(TensorInfo(TensorShape(10U, _batches), 1, DataType::F32));
// Configure Layers
conv1.configure(&input, &w[0], &b[0], &conv1_out, PadStrideInfo(1, 1, 0, 0));
pool1.configure(&conv1_out, &pool1_out, PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)));
conv2.configure(&pool1_out, &w[1], &b[1], &conv2_out, PadStrideInfo(1, 1, 0, 0));
pool2.configure(&conv2_out, &pool2_out, PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)));
fc1.configure(&pool2_out, &w[2], &b[2], &fc1_out);
act1.configure(&fc1_out, &act1_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
fc2.configure(&act1_out, &w[3], &b[3], &fc2_out);
smx.configure(&fc2_out, &output);
}
/** Allocate the network */
void allocate()
{
// Allocate tensors
input.allocator()->allocate();
output.allocator()->allocate();
for(auto &wi : w)
{
wi.allocator()->allocate();
}
for(auto &bi : b)
{
bi.allocator()->allocate();
}
conv1_out.allocator()->allocate();
pool1_out.allocator()->allocate();
conv2_out.allocator()->allocate();
pool2_out.allocator()->allocate();
fc1_out.allocator()->allocate();
act1_out.allocator()->allocate();
fc2_out.allocator()->allocate();
}
/** Fills the trainable parameters and input with random data. */
void fill_random()
{
std::uniform_real_distribution<> distribution(-1, 1);
library->fill(Accessor(input), distribution, 0);
for(unsigned int i = 0; i < w.size(); ++i)
{
library->fill(Accessor(w[i]), distribution, i + 1);
library->fill(Accessor(b[i]), distribution, i + 10);
}
}
/** Fills the trainable parameters from binary files
*
* @param weights Files names containing the weights data
* @param biases Files names containing the bias data
*/
void fill(std::vector<std::string> weights, std::vector<std::string> biases)
{
ARM_COMPUTE_ERROR_ON(weights.size() != w.size());
ARM_COMPUTE_ERROR_ON(biases.size() != b.size());
for(unsigned int i = 0; i < weights.size(); ++i)
{
library->fill_layer_data(Accessor(w[i]), weights[i]);
library->fill_layer_data(Accessor(b[i]), biases[i]);
}
}
/** Feed input to network from file.
*
* @param name File name of containing the input data.
*/
void feed(std::string name)
{
library->fill_layer_data(Accessor(input), name);
}
/** Get the classification results.
*
* @return Vector containing the classified labels
*/
std::vector<unsigned int> get_classifications()
{
std::vector<unsigned int> classified_labels;
Accessor output_accessor(output);
Window window;
window.set(Window::DimX, Window::Dimension(0, 1, 1));
for(unsigned int d = 1; d < output_accessor.shape().num_dimensions(); ++d)
{
window.set(d, Window::Dimension(0, output_accessor.shape()[d], 1));
}
execute_window_loop(window, [&](const Coordinates & id)
{
int max_idx = 0;
float val = 0;
const void *const out_ptr = output_accessor(id);
for(unsigned int l = 0; l < output_accessor.shape().x(); ++l)
{
float curr_val = reinterpret_cast<const float *>(out_ptr)[l];
if(curr_val > val)
{
max_idx = l;
val = curr_val;
}
}
classified_labels.push_back(max_idx);
});
return classified_labels;
}
/** Clear all allocated memory from the tensor objects */
void clear()
{
input.allocator()->free();
output.allocator()->free();
for(auto &wi : w)
{
wi.allocator()->free();
}
for(auto &bi : b)
{
bi.allocator()->free();
}
conv1_out.allocator()->free();
pool1_out.allocator()->free();
conv2_out.allocator()->free();
pool2_out.allocator()->free();
fc1_out.allocator()->free();
act1_out.allocator()->free();
fc2_out.allocator()->free();
}
/** Runs the model */
void run()
{
// Layer 1
conv1.run();
pool1.run();
// Layer 2
conv2.run();
pool2.run();
// Layer 3
fc1.run();
act1.run();
// Layer 4
fc2.run();
// Softmax
smx.run();
}
/** Sync the results */
void sync()
{
sync_if_necessary<TensorType>();
sync_tensor_if_necessary<TensorType>(output);
}
private:
unsigned int _batches{ 0 };
ActivationLayerFunction act1{};
ConvolutionLayerFunction conv1{}, conv2{};
FullyConnectedLayerFunction fc1{}, fc2{};
PoolingLayerFunction pool1{}, pool2{};
SoftmaxLayerFunction smx{};
TensorType input{}, output{};
std::array<TensorType, 4> w{ {} }, b{ {} };
TensorType conv1_out{}, pool1_out{};
TensorType conv2_out{}, pool2_out{};
TensorType fc1_out{}, act1_out{};
TensorType fc2_out{};
};
} // namespace networks
} // namespace test
} // namespace arm_compute
#endif //__ARM_COMPUTE_TEST_MODEL_OBJECTS_LENET5_H__