blob: aea5c113e82b65f82372cb771967f03eba8e28d0 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENETV1_H__
#define __ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENETV1_H__
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/Utils.h"
#include "utils/Utils.h"
#include <memory>
using namespace arm_compute;
using namespace arm_compute::test;
namespace arm_compute
{
namespace test
{
namespace networks
{
/** MobileNet model object */
template <typename TensorType,
typename Accessor,
typename ActivationLayerFunction,
typename BatchNormalizationLayerFunction,
typename ConvolutionLayerFunction,
typename DirectConvolutionLayerFunction,
typename DepthwiseConvolutionFunction,
typename ReshapeFunction,
typename PoolingLayerFunction,
typename SoftmaxLayerFunction>
class MobileNetV1Network
{
public:
/** Initialize the network.
*
* @param[in] input_spatial_size Size of the spatial input.
* @param[in] batches Number of batches.
*/
void init(unsigned int input_spatial_size, int batches)
{
_batches = batches;
_input_spatial_size = input_spatial_size;
// Currently supported sizes
ARM_COMPUTE_ERROR_ON(input_spatial_size != 128 && input_spatial_size != 224);
// Initialize input, output
input.allocator()->init(TensorInfo(TensorShape(input_spatial_size, input_spatial_size, 3U, _batches), 1, DataType::F32));
output.allocator()->init(TensorInfo(TensorShape(1001U, _batches), 1, DataType::F32));
// Initialize weights and biases
w_conv3x3.allocator()->init(TensorInfo(TensorShape(3U, 3U, 3U, 32U), 1, DataType::F32));
mean_conv3x3.allocator()->init(TensorInfo(TensorShape(32U), 1, DataType::F32));
var_conv3x3.allocator()->init(TensorInfo(TensorShape(32U), 1, DataType::F32));
beta_conv3x3.allocator()->init(TensorInfo(TensorShape(32U), 1, DataType::F32));
gamma_conv3x3.allocator()->init(TensorInfo(TensorShape(32U), 1, DataType::F32));
depthwise_conv_block_init(0, 32, 32);
depthwise_conv_block_init(1, 32, 64);
depthwise_conv_block_init(2, 64, 64);
depthwise_conv_block_init(3, 64, 128);
depthwise_conv_block_init(4, 128, 256);
depthwise_conv_block_init(5, 256, 512);
depthwise_conv_block_init(6, 512, 512);
depthwise_conv_block_init(7, 512, 512);
depthwise_conv_block_init(8, 512, 512);
depthwise_conv_block_init(9, 512, 512);
depthwise_conv_block_init(10, 512, 512);
depthwise_conv_block_init(11, 512, 1024);
depthwise_conv_block_init(12, 1024, 1024);
w_conv1c.allocator()->init(TensorInfo(TensorShape(1U, 1U, 1024U, 1001U), 1, DataType::F32));
b_conv1c.allocator()->init(TensorInfo(TensorShape(1001U), 1, DataType::F32));
// Init reshaped output
reshape_out.allocator()->init(TensorInfo(TensorShape(1001U, _batches), 1, DataType::F32));
}
/** Build the model. */
void build()
{
// Configure Layers
conv3x3.configure(&input, &w_conv3x3, nullptr, &conv_out[0], PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR));
conv3x3_bn.configure(&conv_out[0], nullptr, &mean_conv3x3, &var_conv3x3, &beta_conv3x3, &gamma_conv3x3, 0.001f);
conv3x3_act.configure(&conv_out[0], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f));
depthwise_conv_block_build(0, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(1, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(2, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(4, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(5, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(6, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(7, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(8, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(9, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(10, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(11, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
depthwise_conv_block_build(12, PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR), PadStrideInfo(1, 1, 0, 0));
pool.configure(&conv_out[13], &pool_out, PoolingLayerInfo(PoolingType::AVG));
conv1c.configure(&pool_out, &w_conv1c, &b_conv1c, &conv_out[14], PadStrideInfo(1, 1, 0, 0));
reshape.configure(&conv_out[14], &reshape_out);
smx.configure(&reshape_out, &output);
}
/** Allocate the network. */
void allocate()
{
input.allocator()->allocate();
output.allocator()->allocate();
w_conv3x3.allocator()->allocate();
mean_conv3x3.allocator()->allocate();
var_conv3x3.allocator()->allocate();
beta_conv3x3.allocator()->allocate();
gamma_conv3x3.allocator()->allocate();
ARM_COMPUTE_ERROR_ON(w_conv.size() != w_dwc.size());
for(unsigned int i = 0; i < w_conv.size(); ++i)
{
w_dwc[i].allocator()->allocate();
bn_mean[2 * i].allocator()->allocate();
bn_var[2 * i].allocator()->allocate();
bn_beta[2 * i].allocator()->allocate();
bn_gamma[2 * i].allocator()->allocate();
w_conv[i].allocator()->allocate();
bn_mean[2 * i + 1].allocator()->allocate();
bn_var[2 * i + 1].allocator()->allocate();
bn_beta[2 * i + 1].allocator()->allocate();
bn_gamma[2 * i + 1].allocator()->allocate();
}
w_conv1c.allocator()->allocate();
b_conv1c.allocator()->allocate();
// Allocate intermediate buffers
for(auto &o : conv_out)
{
o.allocator()->allocate();
}
for(auto &o : dwc_out)
{
o.allocator()->allocate();
}
pool_out.allocator()->allocate();
reshape_out.allocator()->allocate();
}
/** Fills the trainable parameters and input with random data. */
void fill_random()
{
unsigned int seed_idx = 0;
std::uniform_real_distribution<> distribution(-1, 1);
library->fill(Accessor(input), distribution, seed_idx++);
library->fill(Accessor(w_conv3x3), distribution, seed_idx++);
library->fill(Accessor(mean_conv3x3), distribution, seed_idx++);
library->fill(Accessor(var_conv3x3), distribution, seed_idx++);
library->fill(Accessor(beta_conv3x3), distribution, seed_idx++);
library->fill(Accessor(gamma_conv3x3), distribution, seed_idx++);
ARM_COMPUTE_ERROR_ON(w_conv.size() != w_dwc.size());
for(unsigned int i = 0; i < w_conv.size(); ++i)
{
library->fill(Accessor(w_dwc[i]), distribution, seed_idx++);
library->fill(Accessor(bn_mean[2 * i]), distribution, seed_idx++);
library->fill(Accessor(bn_var[2 * i]), distribution, seed_idx++);
library->fill(Accessor(bn_beta[2 * i]), distribution, seed_idx++);
library->fill(Accessor(bn_gamma[2 * i]), distribution, seed_idx++);
library->fill(Accessor(w_conv[i]), distribution, seed_idx++);
library->fill(Accessor(bn_mean[2 * i + 1]), distribution, seed_idx++);
library->fill(Accessor(bn_var[2 * i + 1]), distribution, seed_idx++);
library->fill(Accessor(bn_beta[2 * i + 1]), distribution, seed_idx++);
library->fill(Accessor(bn_gamma[2 * i + 1]), distribution, seed_idx++);
}
library->fill(Accessor(w_conv1c), distribution, seed_idx++);
library->fill(Accessor(b_conv1c), distribution, seed_idx++);
}
/** Feed input to network from file.
*
* @param name File name of containing the input data.
*/
void feed(std::string name)
{
library->fill_layer_data(Accessor(input), name);
}
/** Get the classification results.
*
* @return Vector containing the classified labels
*/
std::vector<unsigned int> get_classifications()
{
std::vector<unsigned int> classified_labels;
Accessor output_accessor(output);
Window window;
window.set(Window::DimX, Window::Dimension(0, 1, 1));
for(unsigned int d = 1; d < output_accessor.shape().num_dimensions(); ++d)
{
window.set(d, Window::Dimension(0, output_accessor.shape()[d], 1));
}
execute_window_loop(window, [&](const Coordinates & id)
{
int max_idx = 0;
float val = 0;
const void *const out_ptr = output_accessor(id);
for(unsigned int l = 0; l < output_accessor.shape().x(); ++l)
{
float curr_val = reinterpret_cast<const float *>(out_ptr)[l];
if(curr_val > val)
{
max_idx = l;
val = curr_val;
}
}
classified_labels.push_back(max_idx);
});
return classified_labels;
}
/** Clear all allocated memory from the tensor objects */
void clear()
{
input.allocator()->free();
output.allocator()->free();
w_conv3x3.allocator()->free();
mean_conv3x3.allocator()->free();
var_conv3x3.allocator()->free();
beta_conv3x3.allocator()->free();
gamma_conv3x3.allocator()->free();
ARM_COMPUTE_ERROR_ON(w_conv.size() != w_dwc.size());
for(unsigned int i = 0; i < w_conv.size(); ++i)
{
w_dwc[i].allocator()->free();
bn_mean[2 * i].allocator()->free();
bn_var[2 * i].allocator()->free();
bn_beta[2 * i].allocator()->free();
bn_gamma[2 * i].allocator()->free();
w_conv[i].allocator()->free();
bn_mean[2 * i + 1].allocator()->free();
bn_var[2 * i + 1].allocator()->free();
bn_beta[2 * i + 1].allocator()->free();
bn_gamma[2 * i + 1].allocator()->free();
}
w_conv1c.allocator()->free();
b_conv1c.allocator()->free();
// Free intermediate buffers
for(auto &o : conv_out)
{
o.allocator()->free();
}
for(auto &o : dwc_out)
{
o.allocator()->free();
}
pool_out.allocator()->free();
reshape_out.allocator()->free();
}
/** Runs the model */
void run()
{
conv3x3.run();
conv3x3_bn.run();
conv3x3_act.run();
depthwise_conv_block_run(0);
depthwise_conv_block_run(1);
depthwise_conv_block_run(2);
depthwise_conv_block_run(3);
depthwise_conv_block_run(4);
depthwise_conv_block_run(5);
depthwise_conv_block_run(6);
depthwise_conv_block_run(7);
depthwise_conv_block_run(8);
depthwise_conv_block_run(9);
depthwise_conv_block_run(10);
depthwise_conv_block_run(11);
depthwise_conv_block_run(12);
pool.run();
conv1c.run();
reshape.run();
smx.run();
}
/** Sync the results */
void sync()
{
sync_if_necessary<TensorType>();
sync_tensor_if_necessary<TensorType>(output);
}
private:
void depthwise_conv_block_init(unsigned int idx, unsigned int ifm, unsigned int ofm)
{
// Depthwise Convolution weights
w_dwc[idx].allocator()->init(TensorInfo(TensorShape(3U, 3U, ifm), 1, DataType::F32));
// Batch normalization parameters
bn_mean[2 * idx].allocator()->init(TensorInfo(TensorShape(ifm), 1, DataType::F32));
bn_var[2 * idx].allocator()->init(TensorInfo(TensorShape(ifm), 1, DataType::F32));
bn_beta[2 * idx].allocator()->init(TensorInfo(TensorShape(ifm), 1, DataType::F32));
bn_gamma[2 * idx].allocator()->init(TensorInfo(TensorShape(ifm), 1, DataType::F32));
// Convolution weights
w_conv[idx].allocator()->init(TensorInfo(TensorShape(1U, 1U, ifm, ofm), 1, DataType::F32));
// Batch normalization parameters
bn_mean[2 * idx + 1].allocator()->init(TensorInfo(TensorShape(ofm), 1, DataType::F32));
bn_var[2 * idx + 1].allocator()->init(TensorInfo(TensorShape(ofm), 1, DataType::F32));
bn_beta[2 * idx + 1].allocator()->init(TensorInfo(TensorShape(ofm), 1, DataType::F32));
bn_gamma[2 * idx + 1].allocator()->init(TensorInfo(TensorShape(ofm), 1, DataType::F32));
}
void depthwise_conv_block_build(unsigned int idx, PadStrideInfo dwc_ps, PadStrideInfo conv_ps)
{
// Configure depthwise convolution block
dwc3x3[idx].configure(&conv_out[idx], &w_dwc[idx], nullptr, &dwc_out[idx], dwc_ps);
bn[2 * idx].configure(&dwc_out[idx], nullptr, &bn_mean[2 * idx], &bn_var[2 * idx], &bn_beta[2 * idx], &bn_gamma[2 * idx], 0.001f);
act[2 * idx].configure(&dwc_out[idx], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f));
// Configure pointwise convolution block
conv1x1[idx].configure(&dwc_out[idx], &w_conv[idx], nullptr, &conv_out[idx + 1], conv_ps);
bn[2 * idx + 1].configure(&conv_out[idx + 1], nullptr, &bn_mean[2 * idx + 1], &bn_var[2 * idx + 1], &bn_beta[2 * idx + 1], &bn_gamma[2 * idx + 1], 0.001f);
act[2 * idx + 1].configure(&conv_out[idx], nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f));
}
void depthwise_conv_block_run(unsigned int idx)
{
dwc3x3[idx].run();
bn[2 * idx].run();
act[2 * idx].run();
conv1x1[idx].run();
bn[2 * idx + 1].run();
act[2 * idx + 1].run();
}
private:
unsigned int _batches{ 0 };
unsigned int _input_spatial_size{ 0 };
ConvolutionLayerFunction conv3x3{};
BatchNormalizationLayerFunction conv3x3_bn{};
ActivationLayerFunction conv3x3_act{};
std::array<ActivationLayerFunction, 26> act{ {} };
std::array<BatchNormalizationLayerFunction, 26> bn{ {} };
std::array<DepthwiseConvolutionFunction, 13> dwc3x3{ {} };
std::array<DirectConvolutionLayerFunction, 13> conv1x1{ {} };
DirectConvolutionLayerFunction conv1c{};
PoolingLayerFunction pool{};
ReshapeFunction reshape{};
SoftmaxLayerFunction smx{};
TensorType w_conv3x3{}, mean_conv3x3{}, var_conv3x3{}, beta_conv3x3{}, gamma_conv3x3{};
std::array<TensorType, 13> w_conv{ {} };
std::array<TensorType, 13> w_dwc{ {} };
std::array<TensorType, 26> bn_mean{ {} };
std::array<TensorType, 26> bn_var{ {} };
std::array<TensorType, 26> bn_beta{ {} };
std::array<TensorType, 26> bn_gamma{ {} };
TensorType w_conv1c{}, b_conv1c{};
TensorType input{}, output{};
std::array<TensorType, 15> conv_out{ {} };
std::array<TensorType, 13> dwc_out{ {} };
TensorType pool_out{};
TensorType reshape_out{};
};
} // namespace networks
} // namespace test
} // namespace arm_compute
#endif //__ARM_COMPUTE_TEST_MODEL_OBJECTS_MOBILENETV1_H__