blob: 45210d7976891a567082685dfb09151d0aacf6a9 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "transforms/output.hpp"
#include "winograd_gemm.hpp"
#include "arm.hpp"
namespace winograd
{
using Transform = WinogradGEMM<4, 4, 3, 3>::OutputTransform<float>;
template <>
template <>
int Transform::ops_performed(const Tensor4DShape &shape)
{
// NOTE: Cost in FLOPs rather than instructions or uops.
const int tile_M = iceildiv(shape.n_rows, 4);
const int tile_N = iceildiv(shape.n_cols, 4);
return 170 * tile_M * tile_N * shape.n_channels;
}
// Instantiate cost methods
template int Transform::ops_performed(const Tensor4DShape&);
/* F(4x4, 3x3) constructs 4x4 output tiles from a 3x3 convolution. Since we use
* enough tiles to cover the output space each output tile may contain up to 3
* padded values to the right and bottom columns or rows of the tile, e.g.:
*
* ________ ________ ________ ________
* | | | X| | X X| | X X X|
* | | | X| | X X| | X X X|
* | | | X| | X X| | X X X|
* |_______| |______X| |____X_X| |__X_X_X|
*
* ________ ________ ________ ________
* | | | X| | X X| | X X X|
* | | | X| | X X| | X X X|
* | | | X| | X X| | X X X|
* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
*
* ________ ________ ________ ________
* | | | X| | X X| | X X X|
* | | | X| | X X| | X X X|
* |X X X X| |X X X X| |X X X X| |X X X X|
* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
*
* ________ ________ ________ ________
* | | | X| | X X| | X X X|
* |X X X X| |X X X X| |X X X X| |X X X X|
* |X X X X| |X X X X| |X X X X| |X X X X|
* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
*
*
* We provide a specialised output transform for each of these instances.
*/
template <>
template <>
template <int pad_bottom, int pad_right>
void Transform::process_tile(
const int n_channels,
const float* const matrix_base,
const int matrix_stride,
const float* const biases,
float* const output,
const int output_row_stride,
const int output_col_stride
)
{
constexpr int cells_i = 4 - pad_bottom;
constexpr int cells_j = 4 - pad_right;
// Construct a map to the output cells
float *outptrs[cells_i][cells_j];
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
}
}
const float *inptr = matrix_base;
const float *bptr = biases;
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[6][6], FZ[6][4], f[4][4], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
FZ[i][1] = vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f);
// FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
FZ[i][2] = vmlaq_n_f32(vaddq_f32(F[i][1], F[i][2]), vaddq_f32(F[i][3], F[i][4]), 4.0f);
// FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
FZ[i][3] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 4; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
f[1][j] = vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f);
// f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
f[2][j] = vmlaq_n_f32(vaddq_f32(FZ[1][j], FZ[2][j]), vaddq_f32(FZ[3][j], FZ[4][j]), 4.0f);
// f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
f[3][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
}
// Write out the output tile
b = vld1q_f32(bptr);
bptr += 4;
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
outptrs[i][j] += 4;
}
}
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[6][6], FZ[6][4], f[4][4], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
// FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
// FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
FZ[i][1] = vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f);
// FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
FZ[i][2] = vmla_n_f32(vadd_f32(F[i][1], F[i][2]), vadd_f32(F[i][3], F[i][4]), 4.0f);
// FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
FZ[i][3] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 4; j++)
{
// f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
// f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
f[1][j] = vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f);
// f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
f[2][j] = vmla_n_f32(vadd_f32(FZ[1][j], FZ[2][j]), vadd_f32(FZ[3][j], FZ[4][j]), 4.0f);
// f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
f[3][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
}
// Write out the output tile
b = vld1_f32(bptr);
bptr += 2;
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
outptrs[i][j] += 2;
}
}
}
#endif
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[6][6], FZ[6][4], f[4][4], b;
// Read a 6x6 tile in the Winograd domain
for (int i = 0, m = 0; i < 6; i++)
{
for (int j = 0; j < 6; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (int i = 0; i < 6; i++)
{
FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 4; j++)
{
f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
}
// Write out the output tile
b = *(bptr++);
for (int i = 0; i < cells_i; i++)
{
for (int j = 0; j < cells_j; j++)
{
*(outptrs[i][j]++) = f[i][j] + b;
}
}
}
}
template <>
template <>
const Transform::TileFn Transform::tile_fns[max_pad_bottom][max_pad_right] =
{
{
Transform::template process_tile<0, 0>,
Transform::template process_tile<0, 1>,
Transform::template process_tile<0, 2>,
Transform::template process_tile<0, 3>,
},
{
Transform::template process_tile<1, 0>,
Transform::template process_tile<1, 1>,
Transform::template process_tile<1, 2>,
Transform::template process_tile<1, 3>,
},
{
Transform::template process_tile<2, 0>,
Transform::template process_tile<2, 1>,
Transform::template process_tile<2, 2>,
Transform::template process_tile<2, 3>,
},
{
Transform::template process_tile<3, 0>,
Transform::template process_tile<3, 1>,
Transform::template process_tile<3, 2>,
Transform::template process_tile<3, 3>,
}
};
template struct WinogradGEMM<4, 4, 3, 3>::OutputTransform<float>;
} // namespace winograd