blob: 20b678b36c3549b627b386c27bd55d4425800c94 [file] [log] [blame]
/*
* Copyright (c) 2018-2021, 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_WINOGRADCONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_WINOGRADCONVOLUTIONLAYERFIXTURE_H
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/GEMM.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/Utils.h"
#include "tests/validation/reference/Winograd.h"
#include "utils/Utils.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename T1 = T, bool use_bias = true, bool mixed_layout = false>
class WinogradConvolutionLayerFastMathValidationFixture : public framework::Fixture
{
public:
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
DataType data_type, ActivationLayerInfo act_info, const DataLayout &data_layout)
{
ARM_COMPUTE_UNUSED(dilation);
_mixed_layout = mixed_layout;
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, act_info, data_layout);
_reference = compute_reference(input_shape, weights_shape, bias_shape, info, data_type, act_info);
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
const DataLayout data_layout = src.info()->data_layout();
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(data_layout);
dst.info()->set_data_layout(data_layout);
}
template <typename U>
void fill(U &&tensor, int i, float min, float max)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(min), float(max) };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(min, max);
library->fill(tensor, distribution, i);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
}
TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, const PadStrideInfo &info,
DataType data_type, ActivationLayerInfo act_info, const DataLayout data_layout)
{
if(data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
permute(output_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, QuantizationInfo(), data_layout);
TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, QuantizationInfo(), data_layout);
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1, QuantizationInfo(), data_layout);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, QuantizationInfo(), data_layout);
// Create and configure function
FunctionType conv;
ARM_COMPUTE_EXPECT(static_cast<bool>(conv.validate(src.info(), weights.info(), (use_bias) ? bias.info() : nullptr, dst.info(), info, act_info, true /* Enable fast math */)),
framework::LogLevel::ERRORS);
conv.configure(&src, &weights, (use_bias) ? &bias : nullptr, &dst, info, act_info, true /* Enable fast math */);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
add_padding_x({ &src, &weights, &bias, &dst }, data_layout);
// Allocate tensors
src.allocator()->allocate();
weights.allocator()->allocate();
dst.allocator()->allocate();
bias.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0, -0.5f, 0.5f);
fill(AccessorType(weights), 1, -0.5f, 0.5f);
fill(AccessorType(bias), 2, -0.5f, 0.5f);
if(_mixed_layout)
{
mix_layout(conv, src, dst);
}
else
{
// Compute function
conv.run();
}
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const PadStrideInfo &info,
DataType data_type, ActivationLayerInfo act_info)
{
// Create reference
SimpleTensor<T> src_t{ input_shape, data_type, 1 };
SimpleTensor<T> weights_t{ weights_shape, data_type, 1 };
SimpleTensor<T> bias_t{ bias_shape, data_type, 1 };
// Fill reference
fill(src_t, 0, -0.5f, 0.5f);
SimpleTensor<T1> src_t1(copy_tensor<T1, T>(src_t));
fill(weights_t, 1, -0.5f, 0.5f);
SimpleTensor<T1> weights_t1(copy_tensor<T1, T>(weights_t));
if(use_bias)
{
fill(bias_t, 2, -0.5f, 0.5f);
}
else
{
fill(bias_t, 2, 0.f, 0.f);
}
SimpleTensor<T1> bias_t1(copy_tensor<T1, T>(bias_t));
// Set output tile
Size2D output_tile(4U, 4U);
if(weights_shape[0] == 7 && weights_shape[1] == 1)
{
output_tile.width = 2;
output_tile.height = 1;
}
else if(weights_shape[0] == 1 && weights_shape[1] == 7)
{
output_tile.width = 1;
output_tile.height = 2;
}
else if(weights_shape[0] == 1)
{
output_tile.width = 1;
}
else if(weights_shape[1] == 1)
{
output_tile.height = 1;
}
WinogradInfo winograd_info(output_tile,
Size2D(weights_shape[0], weights_shape[1]),
Size2D(input_shape[0], input_shape[1]),
info,
src_t1.data_layout());
// Compute tensor shapes for input, filter and output transforms
TensorShape input_transform_shape = compute_winograd_input_transform_shape(TensorInfo(input_shape, 1, data_type), winograd_info);
TensorShape filter_transform_shape = compute_winograd_filter_transform_shape(TensorInfo(weights_shape, 1, data_type), winograd_info);
TensorShape batched_gemm_shape = input_transform_shape;
batched_gemm_shape[0] = filter_transform_shape[0];
TensorShape output_transform_shape = compute_winograd_output_transform_shape(TensorInfo(batched_gemm_shape, 1, data_type), winograd_info);
// Dummy matrix C to perform matrix multiplication
SimpleTensor<T1> dummy_c{ batched_gemm_shape, data_type, 1 };
// Compute Winograd-based convolution
SimpleTensor<T1> input_transform_out = reference::winograd_input_transform<T1>(src_t1, input_transform_shape, winograd_info);
SimpleTensor<T1> filter_transform_out = reference::winograd_filter_transform<T1>(weights_t1, filter_transform_shape, winograd_info);
SimpleTensor<T1> batched_gemm = reference::gemm<T1>(input_transform_out, filter_transform_out, dummy_c, 1.0f, 0.0f);
SimpleTensor<T1> conv_out = reference::winograd_output_transform<T1>(batched_gemm, bias_t1, output_transform_shape, winograd_info);
SimpleTensor<T> conv_out_t(copy_tensor<T, T1>(conv_out));
return (act_info.enabled()) ? reference::activation_layer<T>(conv_out_t, act_info) : conv_out_t;
}
TensorType _target{};
SimpleTensor<T> _reference{};
bool _mixed_layout{ false };
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class WinogradInputTransformValidationFixture : public framework::Fixture
{
public:
void setup(TensorShape input_shape, WinogradInfo winograd_info, DataLayout data_layout, DataType data_type)
{
TensorShape output_shape = compute_winograd_input_transform_shape(TensorInfo(input_shape, 1, data_type), winograd_info);
_mixed_layout = mixed_layout;
_target = compute_target(input_shape, output_shape, winograd_info, data_layout, data_type);
_reference = compute_reference(input_shape, output_shape, winograd_info, data_type);
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
const DataLayout data_layout_src = src.info()->data_layout();
const DataLayout data_layout_dst = dst.info()->data_layout();
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(data_layout_src == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(data_layout_dst == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(data_layout_src);
dst.info()->set_data_layout(data_layout_dst);
}
template <typename U>
void fill(U &&tensor, int i, float min, float max)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(min), float(max) };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(min, max);
library->fill(tensor, distribution, i);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
}
TensorType compute_target(TensorShape input_shape, const TensorShape &output_shape, const WinogradInfo &winograd_info, DataLayout data_layout, DataType data_type)
{
if(data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
}
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, QuantizationInfo(), data_layout);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, QuantizationInfo());
// Create and configure function
FunctionType transf;
transf.configure(&src, &dst, winograd_info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
add_padding_x({ &src, &dst }, data_layout);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0, -1.f, 1.f);
if(_mixed_layout)
{
mix_layout(transf, src, dst);
}
else
{
// Compute Winograd input transform function
transf.run();
}
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &output_shape, const WinogradInfo &winograd_info, DataType data_type)
{
// Create reference
SimpleTensor<T> src{ input_shape, data_type, 1, QuantizationInfo() };
// Fill reference
fill(src, 0, -1.f, 1.f);
return reference::winograd_input_transform<T>(src, output_shape, winograd_info);
}
bool _mixed_layout{ false };
TensorType _target{};
SimpleTensor<T> _reference{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class WinogradFilterTransformValidationFixture : public framework::Fixture
{
public:
void setup(TensorShape input_shape, Size2D output_tile, DataLayout data_layout, DataType data_type)
{
WinogradInfo winograd_info(output_tile, Size2D(input_shape[0], input_shape[1]), Size2D() /* Not needed */, PadStrideInfo() /* Not needed */, DataLayout::NCHW /* Not needed */);
TensorShape output_shape = compute_winograd_filter_transform_shape(TensorInfo(input_shape, 1, data_type), winograd_info);
_mixed_layout = mixed_layout;
_target = compute_target(input_shape, output_shape, winograd_info, data_layout, data_type);
_reference = compute_reference(input_shape, output_shape, winograd_info, data_type);
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
const DataLayout data_layout_src = src.info()->data_layout();
const DataLayout data_layout_dst = dst.info()->data_layout();
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(data_layout_src == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(data_layout_dst == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(data_layout_src);
dst.info()->set_data_layout(data_layout_dst);
}
template <typename U>
void fill(U &&tensor, int i, float min, float max)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(min), float(max) };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(min, max);
library->fill(tensor, distribution, i);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
}
TensorType compute_target(TensorShape input_shape, const TensorShape &output_shape, const WinogradInfo &winograd_info, DataLayout data_layout, DataType data_type)
{
if(data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, QuantizationInfo(), data_layout);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, QuantizationInfo());
// Create and configure function
FunctionType filter_transform;
filter_transform.configure(&src, &dst, winograd_info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
add_padding_x({ &src, &dst }, data_layout);
// Allocate tensors
src.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0, -1.f, 1.f);
if(_mixed_layout)
{
mix_layout(filter_transform, src, dst);
}
else
{
// Compute Winograd filter transform function
filter_transform.run();
}
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &output_shape, const WinogradInfo &winograd_info, DataType data_type)
{
// Create reference
SimpleTensor<T> src{ input_shape, data_type, 1, QuantizationInfo() };
// Fill reference
fill(src, 0, -1.f, 1.f);
return reference::winograd_filter_transform<T>(src, output_shape, winograd_info);
}
bool _mixed_layout{ false };
TensorType _target{};
SimpleTensor<T> _reference{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class WinogradOutputTransformValidationFixture : public framework::Fixture
{
public:
void setup(TensorShape input_shape, WinogradInfo winograd_info, DataType data_type, ActivationLayerInfo act_info = ActivationLayerInfo())
{
_target = compute_target(input_shape, winograd_info, data_type, act_info);
_reference = compute_reference(input_shape, winograd_info, data_type, act_info);
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
const DataLayout data_layout_src = src.info()->data_layout();
const DataLayout data_layout_dst = dst.info()->data_layout();
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(data_layout_src == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(data_layout_dst == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(data_layout_src);
dst.info()->set_data_layout(data_layout_dst);
}
template <typename U>
void fill(U &&tensor, int i, float min, float max)
{
switch(tensor.data_type())
{
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(min), float(max) };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(min, max);
library->fill(tensor, distribution, i);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
}
TensorType compute_target(const TensorShape &input_shape, const WinogradInfo &winograd_info, DataType data_type, ActivationLayerInfo act_info)
{
TensorShape output_shape = compute_winograd_output_transform_shape(TensorInfo(input_shape, 1, data_type), winograd_info);
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type);
TensorType bias = create_tensor<TensorType>(output_shape[get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::CHANNEL)], data_type);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, QuantizationInfo(), winograd_info.output_data_layout);
// Create and configure function
FunctionType output_transform;
output_transform.configure(&src, &bias, &dst, winograd_info, act_info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
add_padding_x({ &src, &bias, &dst }, winograd_info.output_data_layout);
// Allocate tensors
src.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0, -1.f, 1.f);
fill(AccessorType(bias), 1, -1.f, 1.f);
if(_mixed_layout)
{
mix_layout(output_transform, src, dst);
}
else
{
// Compute Winograd output transform function
output_transform.run();
}
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, WinogradInfo winograd_info, DataType data_type, ActivationLayerInfo act_info)
{
winograd_info.output_data_layout = DataLayout::NCHW;
TensorShape output_shape = compute_winograd_output_transform_shape(TensorInfo(input_shape, 1, data_type), winograd_info);
// Create reference
SimpleTensor<T> src{ input_shape, data_type };
SimpleTensor<T> bias{ TensorShape(input_shape[0]), data_type };
// Fill reference
fill(src, 0, -1.f, 1.f);
fill(bias, 1, -1.f, 1.f);
const SimpleTensor<T> winograd_output = reference::winograd_output_transform<T>(src, bias, output_shape, winograd_info);
return (act_info.enabled()) ? reference::activation_layer<T>(winograd_output, act_info) : winograd_output;
}
bool _mixed_layout{ false };
TensorType _target{};
SimpleTensor<T> _reference{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_WINOGRADCONVOLUTIONLAYERFIXTURE_H