blob: 672684d14f7ff5e95f1f0a7f235c550ebd83602f [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
//Batched Gemms
namespace
{
Status validate_arguments_winograd_gemm(const ITensorInfo *a, const ITensorInfo *b, const ITensor *c, const ITensorInfo *output, const float alpha, const float beta,
const GEMMInfo &gemm_info = GEMMInfo())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(a);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(b);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
if(c != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, c->info());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->info()->dimension(1), "The matrix C must have the same number of rows as the matrix A");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->info()->dimension(0), "The matrix C must have the same number of columns as the matrix B");
}
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != output->dimension(0), "The output matrix must have the same number of columns as the matrix B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != output->dimension(1), "The output matrix must have the same number of rows as the matrix A");
ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() != a->num_dimensions());
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_UNUSED(alpha, beta);
return Status{};
}
Status validate_arguments_winograd_weight_trans(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(idx_width) != 3 && input->dimension(idx_width) != 5);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(idx_width) != input->dimension(idx_height));
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
const Size2D &output_tile = winograd_info.output_tile_size;
ARM_COMPUTE_RETURN_ERROR_ON(output_tile != Size2D(2U, 2U) && output_tile != Size2D(4U, 4U));
// Checks performed when output is configured
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_filter_transform_shape(*input, winograd_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window_winograd_weight_trans(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
const Size2D kernel_dims = winograd_info.kernel_size;
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_filter_transform_shape(*input, winograd_info)));
unsigned int num_elems_processed_per_iteration_x = kernel_dims.width;
unsigned int num_elems_processed_per_iteration_y = kernel_dims.height;
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
bool window_changed = false;
AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
AccessWindowStatic output_access(output, 0, 0, output->dimension(0), output->dimension(1));
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
Window win_collapsed = win.collapse(win, Window::DimZ);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win_collapsed);
}
Status validate_arguments_winograd_input_trans(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
const Size2D &kernel_dims = winograd_info.kernel_size;
const PadStrideInfo &conv_info = winograd_info.convolution_info;
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((kernel_dims.width != 3U && kernel_dims.width != 5U), "Winograd input transform only supports 3x3 and 5x5 kernels");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((kernel_dims.width != kernel_dims.height), "Winograd input transform only supports 3x3 and 5x5 kernels");
// Validate configured output
if(output->total_size() != 0)
{
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window_winograd_input_trans(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info)
{
const PadStrideInfo conv_info = winograd_info.convolution_info;
const Size2D output_tile_size = winograd_info.output_tile_size;
const Size2D kernel_dims = winograd_info.kernel_size;
const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
unsigned int num_elems_read_per_iteration_x = (output_tile_size.width + kernel_dims.width - 1);
unsigned int num_elems_read_per_iteration_y = (output_tile_size.height + kernel_dims.height - 1);
Window win = calculate_max_window(*input, Steps(1, 1));
AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y);
bool window_changed = update_window_and_padding(win, input_access);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
Status validate_arguments_winograd_output_trans(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
const PadStrideInfo &conv_info = winograd_info.convolution_info;
const Size2D kernel_dims = winograd_info.kernel_size;
// Number of tiles along the X and Y direction
const unsigned int num_tiles_x = std::ceil((winograd_info.input_dimensions.x() - (kernel_dims.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>
(winograd_info.output_tile_size.width));
const unsigned int num_tiles_y = std::ceil((winograd_info.input_dimensions.y() - (kernel_dims.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>
(winograd_info.output_tile_size.height));
const Size2D num_tiles = Size2D(num_tiles_x, num_tiles_y);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(winograd_info.output_data_layout != DataLayout::NCHW);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(1) != num_tiles.area());
ARM_COMPUTE_RETURN_ERROR_ON_MSG((kernel_dims.width != 3U && kernel_dims.width != 5U), "Winograd output transform only supports 3x3 and 5x5 kernels");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((kernel_dims.width != kernel_dims.height), "Winograd output transform only supports 3x3 and 5x5 kernels");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((input->dimension(2) != size_t(16U)) && (input->dimension(2) != size_t(36U))), "Only 2x2 and 4x4 output tile is supported");
ARM_COMPUTE_UNUSED(kernel_dims);
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() != size_t(1));
}
// Checks performed when output is configured
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_output_transform_shape(*input, winograd_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window_winograd_output_trans(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output, const WinogradInfo &winograd_info)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_winograd_output_transform_shape(*input, winograd_info)));
constexpr unsigned int num_elems_processed_per_iteration = 1;
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
bool window_changed = false;
AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration);
AccessWindowStatic output_access(output, 0, 0, ceil_to_multiple(output->dimension(0), 2), ceil_to_multiple(output->dimension(1), 2));
if(bias != nullptr)
{
AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
window_changed = update_window_and_padding(win, input_access, bias_access, output_access);
}
else
{
window_changed = update_window_and_padding(win, input_access, output_access);
}
output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerBatchedGEMMKernel()
: _gemms()
{
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const unsigned int n_gemms,
const int M, const int K, const int N,
const int a_matrix_stride,
const int a_row_stride,
const int b_matrix_stride,
const int b_row_stride,
const int c_matrix_stride,
const int c_row_stride,
const TIn *const a_ptr,
const TIn *const b_ptr,
TOut *const c_ptr)
{
_gemms = support::cpp14::make_unique<MultiGEMM>(n_gemms, M, K, N, a_matrix_stride, a_row_stride, b_matrix_stride, b_row_stride, c_matrix_stride, c_row_stride, a_ptr, b_ptr, c_ptr);
Window win;
auto win_last = _gemms->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t first_gemm = window.x().start();
const size_t last_gemm = window.x().end();
_gemms->run(first_gemm, last_gemm);
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_number_gemms() const
{
return WinogradBase::N_GEMMS;
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_tile_rows() const
{
return _output_tile_rows;
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_tile_cols() const
{
return _output_tile_cols;
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_number_blocks() const
{
return WinogradConv::N_BLOCK;
}
template <typename TIn, typename TOut, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerBatchedGEMMKernel<TIn, TOut, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensor *c,
const ITensorInfo *output, const float alpha, const float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_gemm(a, b, c, output, alpha, beta, gemm_info));
return Status{};
}
template class NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 3, 3>;
template class NEWinogradLayerBatchedGEMMKernel<float, float, 4, 4, 3, 3>;
template class NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 5, 5>;
// Weights transform
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_weight_storage_size(int n_output_channels, int n_input_channels) const
{
const KernelShape shape(n_output_channels, KernelRows, KernelCols, n_input_channels);
return static_cast<unsigned int>(
// WinogradConv returns the size in bytes, we divide by `sizeof(T)` to express that in units of T
WinogradConv::get_kernel_storage_size(shape) / sizeof(T));
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformWeightsKernel()
: _transform()
{
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(const KernelShape &kernel_shape) const
{
return WinogradConv::get_kernel_matrix_stride(kernel_shape);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const ITensor *weights_hwio,
T *const output,
const int matrix_stride, /** Stride across matrices in the output. */
const int n_output_channels, /** Number of filters. */
const int n_input_channels) /** Number of channels in each filter. */
{
const int matrix_row_stride = roundup(n_output_channels, WinogradConv::N_BLOCK);
_transform = support::cpp14::make_unique<WeightsTransform>(reinterpret_cast<T *>(weights_hwio->buffer()), output, matrix_stride, matrix_row_stride, n_output_channels,
n_input_channels);
Window win;
auto win_last = _transform->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t fst = window.x().start();
const size_t lst = window.x().end();
_transform->run(fst, lst);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
bool NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::is_parallelisable() const
{
return false;
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformWeightsKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *output,
const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_weight_trans(input, output, winograd_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_weight_trans(input->clone().get(), output->clone().get(), winograd_info).first);
return Status{};
}
template class NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>;
// Input transform
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_input_storage_size(
int n_batches, /** Number of batches in the input tensor. */
int n_channels, /** Number of feature maps in the input tensor. */
int n_rows, /** Number of rows in each feature map. */
int n_cols, /** Number of columns in each feature map. */
bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
) const
{
// Construct shapes for the input and kernel tensors.
const Tensor4DShape input_shape(n_batches, n_rows, n_cols, n_channels);
const KernelShape kern_shape(1, KernelRows, KernelCols, n_channels);
const PaddingType padding = (same_padding) ? PADDING_SAME : PADDING_VALID;
// Return the size, converted into units of TIn
return static_cast<unsigned int>(WinogradConv::get_input_storage_size(kern_shape, input_shape, padding) / sizeof(T));
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(
const KernelShape &kernel_shape, const Tensor4DShape &input_shape, const PaddingType padding_type) const
{
return WinogradConv::get_input_matrix_stride(kernel_shape, input_shape, padding_type);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformInputKernel()
: _transform()
{
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const T *const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int n_rows, /** Number of rows in input tensor. */
const int n_cols, /** Number of columns in input tensor. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
T *const output, /** Base of output matrices. */
const int matrix_stride) /** Stride between output matrices. */
{
// _input_matrix_row_stride(n_input_channels),
_transform = support::cpp14::make_unique<InputTransform>(input, n_batches, n_rows, n_cols, n_channels, padding, output, matrix_stride, n_channels);
Window win;
auto win_last = _transform->get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
const size_t fst = window.x().start();
const size_t lst = window.x().end();
_transform->run(fst, lst);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformInputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_input_trans(input, output, winograd_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_input_trans(input->clone().get(), output->clone().get(), winograd_info).first);
return Status{};
}
template class NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>;
// Output transform
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
unsigned int NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_storage_size(
int n_batches, /** Number of batches in the output tensor. */
int n_rows, /** Number of rows in each feature map of the input tensor. */
int n_cols, /** Number of columns in each feature map of the input tensor. */
int n_output_channels, /** Number of feature maps in the output tensor. */
bool same_padding /** Use "SAME" padding, otherwise use "VALID". */
) const
{
// Construct shapes for the input and kernel tensors.
const Tensor4DShape input_shape(n_batches, n_rows, n_cols, 1);
const KernelShape kern_shape(n_output_channels, KernelRows, KernelCols, 1);
const PaddingType padding = (same_padding) ? PADDING_SAME : PADDING_VALID;
// Return the size, converted into units of TOut
return static_cast<unsigned int>(
WinogradConv::get_output_storage_size(kern_shape, input_shape, padding) / sizeof(T));
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::NEWinogradLayerTransformOutputKernel()
: _biases(nullptr), _output_workspace(nullptr), _matrix_stride(0), _matrix_row_stride(0), _output(nullptr), _n_batches(0), _n_rows(0), _n_cols(0), _n_channels(0)
{
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
int NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_matrix_stride(
const KernelShape &kernel_shape, const Tensor4DShape &input_shape, const PaddingType padding_type) const
{
return WinogradConv::get_output_matrix_stride(kernel_shape, input_shape, padding_type);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Tensor4DShape NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::get_output_shape(
const KernelShape &kernel_shape, const Tensor4DShape &in_shape, const PaddingType padding) const
{
return WinogradConv::get_output_shape(kernel_shape, in_shape, padding);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::configure(
const ITensor *biases,
const T *const output_workingspace,
const int matrix_stride,
T *const output,
const int n_batches,
const int n_rows,
const int n_cols,
const int n_channels)
{
_biases = biases;
_output_workspace = output_workingspace;
_matrix_stride = matrix_stride;
_matrix_row_stride = roundup(n_channels, WinogradConv::N_BLOCK);
_output = output;
_n_batches = n_batches;
_n_rows = n_rows;
_n_cols = n_cols;
_n_channels = n_channels;
// We don't have the biases buffer at this stage as it hasn't been allocated, we pass in nullptr OutputTransform is only used here to compute the window
OutputTransform output_transform(_output_workspace, _matrix_stride, _matrix_row_stride, nullptr, _output, _n_batches, _n_rows, _n_cols, _n_channels);
Window win;
auto win_last = output_transform.get_window();
win.set(Window::DimX, Window::Dimension(0, win_last, 1));
INEKernel::configure(win);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
void NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_NULLPTR(_output_workspace);
ARM_COMPUTE_ERROR_ON_NULLPTR(_output);
OutputTransform output_transform(_output_workspace, _matrix_stride, _matrix_row_stride,
(_biases ? reinterpret_cast<T *>(_biases->buffer()) : nullptr), _output,
_n_batches, _n_rows, _n_cols, _n_channels);
// The code below cannot be moved to configure because biases hasn't been allocated at that point
const size_t fst = window.x().start();
const size_t lst = window.x().end();
output_transform.run(fst, lst);
}
template <typename T, int OutputTileRows, int OutputTileCols, int KernelRows, int KernelCols>
Status NEWinogradLayerTransformOutputKernel<T, OutputTileRows, OutputTileCols, KernelRows, KernelCols>::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
const WinogradInfo &winograd_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_winograd_output_trans(input, (bias != nullptr ? bias->clone().get() : nullptr), output, winograd_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_winograd_output_trans(input->clone().get(), (bias != nullptr ? bias->clone().get() : nullptr), output->clone().get(),
winograd_info)
.first);
return Status{};
}
template class NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>;
template class NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>;
template class NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>;
} // namespace arm_compute