blob: bece43898983621cf58094248ae57304cb99d9f1 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/core/cpu/kernels/pool2d/neon/list.h"
#include "src/core/helpers/WindowHelpers.h"
#ifdef ENABLE_NCHW_KERNELS
namespace arm_compute
{
namespace cpu
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
ARM_COMPUTE_UNUSED(pool_info.pool_type);
ARM_COMPUTE_UNUSED(pool_info.exclude_padding);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 3;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()));
float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
middle_data = vmul_f16(middle_data, middle_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
// Perform pooling
const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
res = vmul_f16(vpadd_f16(res, res), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
res = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
res = vpmax_f16(res, res);
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
*(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
},
in, out);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
f16_to_f32(float16x4_t in)
{
float32x2_t out = { static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1)) };
return out;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T>
inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
f16_to_f32(float32x2_t in)
{
return in;
}
template <typename T>
void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
Iterator in(src, window_src);
Iterator out(dst0, window);
Iterator indices(dst1, window);
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const int pad_left = src->info()->padding().left;
const int pad_right = src->info()->padding().right;
const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
execute_window_loop(window, [&](const Coordinates & id)
{
auto top_data = wrapper::vload(reinterpret_cast<const T *>(src_top_ptr + in.offset()));
auto bottom_data = wrapper::vload(reinterpret_cast<const T *>(src_bottom_ptr + in.offset()));
float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
// Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
*(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
// Calculate max data indice, which will be used in max unpool.
const uint32_t offset_base = offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
const uint32x2_t voffset_top = { offset_top, offset_top + 1u };
const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u };
const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
*(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
},
in, out, indices);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
if(pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
}
else
{
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr int pool_size = 2;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x, pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(top_data, bottom_data);
res = vpmax_f16(max_data, max_data);
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
// Store result
*(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
},
in, out);
}
}
void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float16_t res = 0.0f;
float16x8_t vres = vdupq_n_f16(0.0f);
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling and accumulate
if(pool_info.pool_type == PoolingType::L2)
{
vres = vaddq_f16(vres, vmulq_f16(data, data));
}
else
{
vres = vaddq_f16(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
// Reduction
float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
res += vget_lane_f16(tmp, 0);
res += vget_lane_f16(tmp, 1);
res += vget_lane_f16(tmp, 2);
res += vget_lane_f16(tmp, 3);
// Divide by scale
res *= scale;
}
else
{
float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
vres = vmaxq_f16(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float16_t data = *(reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y())));
res = std::max(res, data);
}
}
float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
res = std::max(res, vget_lane_f16(tmp, 0));
res = std::max(res, vget_lane_f16(tmp, 1));
res = std::max(res, vget_lane_f16(tmp, 2));
res = std::max(res, vget_lane_f16(tmp, 3));
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float16_t *>(out.ptr())) = res;
},
in, out);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float res = 0.0f;
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
// Perform pooling
float32x4_t vres = vdupq_n_f32(0.0f);
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling and accumulate
if(pool_info.pool_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res += vaddvq_f32(vres);
#else // __aarch64__
// Reduction
float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpadd_f32(tmp, tmp);
res += vget_lane_f32(tmp, 0);
#endif // __aarch64__
// Divide by scale
res *= scale;
}
else
{
float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
vres = vmaxq_f32(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(src->info()->strides_in_bytes().y())));
res = std::max(res, data);
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res = std::max(vmaxvq_f32(vres), res);
#else // __aarch64__
float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpmax_f32(tmp, tmp);
res = std::max(res, vget_lane_f32(tmp, 0));
#endif // __aarch64__
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = res;
},
in, out);
}
void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
if(pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
}
else
{
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr int pool_size = 2;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
float32x2_t top_data = vld1_f32(in_top_ptr);
float32x2_t bottom_data = vld1_f32(in_bottom_ptr);
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f32(top_data, top_data);
bottom_data = vmul_f32(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
}
else
{
const float32x2_t max_data = vmax_f32(top_data, bottom_data);
res = vpmax_f32(max_data, max_data);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
}
void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 3;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x4_t top_data = vld1q_f32(reinterpret_cast<const float *>(src_top_ptr + in.offset()));
float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(src_middle_ptr + in.offset()));
float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(src_bottom_ptr + in.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmulq_f32(top_data, top_data);
middle_data = vmulq_f32(middle_data, middle_data);
bottom_data = vmulq_f32(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 7;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
std::array<const uint8_t *, pool_size> src_ptrs{ {} };
for(int i = 0; i < pool_size; ++i)
{
src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t res = {};
float final_res = 0.f;
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + in.offset()));
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
for(int i = 1; i < pool_size; ++i)
{
data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + in.offset()));
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
sum_data = vaddq_f32(sum_data, data.val[0]);
sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
}
res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[0] + in.offset()));
for(int i = 1; i < pool_size; ++i)
{
const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(src_ptrs[i] + in.offset()));
max_data = vmax2q_f32(max_data, data);
}
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
} // namespace cpu
} // namespace arm_compute
#endif // ENABLE_NCHW_KERNELS