blob: 07ce0d3b55d5e0bcc83149163d4523be21e66fcb [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "depthwise_depthfirst_multiplier.hpp"
namespace arm_conv {
namespace depthwise {
template <class strategy>
class DepthwiseDepthfirstWithMultiplierQuantized :
public DepthwiseCommon<typename strategy::input_type,
typename strategy::weight_type,
typename strategy::return_type>
{
using Parent = DepthwiseCommon<typename strategy::input_type,
typename strategy::weight_type,
typename strategy::return_type>;
using TInput = typename strategy::input_type;
using TWeight = typename strategy::weight_type;
using TOutput = typename strategy::return_type;
const arm_gemm::Requantize32 m_qp;
size_t sizeof_output_buffer(unsigned int n_channels) const
{
const unsigned int vl = arm_gemm::utils::get_vector_length<typename strategy::return_type>(strategy::vl_type);
const auto rounded_channels = arm_gemm::roundup(n_channels, vl);
return sizeof(typename strategy::return_type) * rounded_channels;
}
public:
DepthwiseDepthfirstWithMultiplierQuantized(const DepthwiseArgs &args, const arm_gemm::Requantize32 &qp)
: Parent(args), m_qp(qp)
{
}
DepthwiseDepthfirstWithMultiplierQuantized(DepthwiseDepthfirstWithMultiplierQuantized &) = delete;
DepthwiseDepthfirstWithMultiplierQuantized &operator=(DepthwiseDepthfirstWithMultiplierQuantized &) = delete;
size_t get_storage_size(void) const override
{
// We produce VL<int32_t> channels at a time, for each of these blocks of
// channels we store a vector of biases, weights (complicated) and
// requantize parameters.
const unsigned int iter_length =
arm_gemm::utils::get_vector_length<int32_t>(strategy::vl_type);
const unsigned int n_iters =
this->m_args.input_channels * arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length);
// Compute the cost of storing the weights
const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u);
return n_iters * iter_length * (
sizeof(int32_t) + // Bias
4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(TWeight) + // Weights
2 * sizeof(int32_t) // Requantisation parameters
);
}
// We'll want an optimised version of this, but for now a C++ implementation
// is probably sufficient.
void pack_parameters(void *_buffer, const void *_biases, const void *_weights, size_t ld_weight_col, size_t ld_weight_row) override
{
auto buffer = static_cast<uint8_t *>(_buffer);
auto biases = static_cast<const int32_t *>(_biases);
auto weights = static_cast<const TWeight *>(_weights);
auto requant_muls = m_qp.per_channel_muls;
auto requant_shifts = m_qp.per_channel_right_shifts;
const unsigned int iter_length =
arm_gemm::utils::get_vector_length<int32_t>(strategy::vl_type);
const unsigned int n_iters_per_input_channel =
arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length);
const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u);
const size_t iter_stride = iter_length * (
sizeof(int32_t) + // Bias
4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(int8_t) + // Weights
2 * sizeof(int32_t) // Requantisation parameters
);
ld_weight_col = (ld_weight_col == 0) ? this->m_args.input_channels * this->m_args.channel_multiplier : ld_weight_col;
ld_weight_row = (ld_weight_row == 0) ? this->m_args.kernel_cols * ld_weight_col : ld_weight_row;
for (unsigned int input_channel = 0; input_channel < this->m_args.input_channels; input_channel++)
{
auto buffer_input_channel = buffer + input_channel * n_iters_per_input_channel * iter_stride;
auto weights_input_channel = weights + input_channel * this->m_args.channel_multiplier;
for (unsigned int iter = 0; iter < n_iters_per_input_channel; iter++)
{
// Get a pointer to the start of this portion of the buffer; consequently
// derive pointers to the bias, weight and requantisation portions of
// this frame.
auto buffer_base = buffer_input_channel + iter_stride * iter;
auto buffer_biases = reinterpret_cast<int32_t *>(buffer_base);
auto buffer_weights = buffer_base + sizeof(int32_t) * iter_length;
auto buffer_requant_mul = reinterpret_cast<int32_t *>(
buffer_weights + strategy::kernel_rows * n_dots_per_kernel_row * 4 * iter_length);
auto buffer_requant_shift = buffer_requant_mul + iter_length;
auto weights_base = weights_input_channel + iter * iter_length;
// Hence work through the data for this iteration, on a
// channel-by-channel basis.
const auto this_iter_length = std::min<unsigned int>(
iter_length, this->m_args.channel_multiplier - iter * iter_length
);
for (unsigned int i = 0; i < this_iter_length; i++)
{
auto weights_channel = weights_base + i;
// Read the bias value, we modify this as we read the weights.
auto bias_value = biases == nullptr ? 0 : *(biases++);
int32_t elements_sum = 0;
// Read through the kernel; for each row, marshal together as many dot
// product terms as are required.
for (unsigned int ki = 0; ki < strategy::kernel_rows; ki++)
{
auto buffer_row = buffer_weights + i*4 + ki * 4 * n_dots_per_kernel_row * iter_length;
auto weights_row = weights_channel + ki * ld_weight_row;
unsigned int kj = 0;
for (; kj < strategy::kernel_cols; kj++)
{
// Determine which element to which we're writing
const auto dot = kj / 4;
const auto elem = kj % 4;
// Copy the value; include in the sum
const auto val = weights_row[kj * ld_weight_col];
buffer_row[dot * 4 * iter_length + elem] = val;
elements_sum += val;
}
for (; kj < 4 * n_dots_per_kernel_row; kj++)
{
const auto dot = kj / 4;
const auto elem = kj % 4;
buffer_row[dot * 4 * iter_length + elem] = 0;
}
buffer_row += 4 * n_dots_per_kernel_row * iter_length;
}
// Write back the bias and offset values
*(buffer_biases++) =
bias_value - m_qp.a_offset * elements_sum +
strategy::kernel_rows * strategy::kernel_cols * m_qp.a_offset * m_qp.b_offset;
// Write out the requantisation parameters
*(buffer_requant_mul++) = m_qp.per_channel_requant ? *(requant_muls++) : m_qp.per_layer_mul;
*(buffer_requant_shift++) = m_qp.per_channel_requant ? *(requant_shifts++) : m_qp.per_layer_right_shift;
}
}
}
}
size_t get_working_size(const unsigned int n_threads, const unsigned int n_channels) const override
{
const unsigned int n_output_channels = n_channels * this->m_args.channel_multiplier;
return n_threads * sizeof_output_buffer(n_output_channels);
}
using Parent::execute;
void execute(
const unsigned int batches,
const unsigned int input_height,
const unsigned int input_width,
const unsigned int input_channels,
const PaddingValues &padding,
const void *const _input,
const size_t ld_input_col,
const size_t ld_input_row,
const size_t ld_input_batch,
const void *const parameters,
const unsigned int output_height,
const unsigned int output_width,
void *const _output,
const size_t ld_output_col,
const size_t ld_output_row,
const size_t ld_output_batch,
void *const _working_space,
const unsigned int thread_id,
const unsigned int n_threads
) const override
{
strategy strat(this->m_args.cpu_info);
#ifdef CYCLE_PROFILING
arm_gemm::profiler prof;
#endif
auto executefn = [strat, this] (
const TInput *const *const inptrs,
TOutput *const *const outptr_array,
const void *const params
) {
strat.kernel(inptrs, outptr_array, params, this->m_args.channel_multiplier, m_qp);
};
// Get working space for this thread
uint8_t *const working_space = static_cast<uint8_t *>(_working_space) + get_working_size(1, input_channels) * thread_id;
// Determine the stride across blocks of parameters
const unsigned int iter_length =
arm_gemm::utils::get_vector_length<int32_t>(strategy::vl_type);
const unsigned int n_iters_per_input_channel = arm_gemm::iceildiv(this->m_args.channel_multiplier, iter_length);
const unsigned int n_dots_per_kernel_row = arm_gemm::iceildiv(strategy::kernel_cols, 4u);
const size_t param_stride = n_iters_per_input_channel * iter_length * (
sizeof(int32_t) + // Bias
4 * n_dots_per_kernel_row * strategy::kernel_rows * sizeof(int8_t) + // Weights
2 * sizeof(int32_t) // Requantisation parameters
);
common::depthwise_multiplier_execute<strategy>(
executefn, m_qp.a_offset, this->m_args,
batches, input_height, input_width, input_channels, padding,
_input, ld_input_col, ld_input_row, ld_input_batch,
parameters, param_stride,
output_height, output_width,
_output, ld_output_col, ld_output_row, ld_output_batch,
working_space, thread_id, n_threads
);
}
};
} // namespace depthwise
} // namespace arm_conv