blob: c88f0034c5a4ed832dd1f264bdf26f7f81ef025b [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "activation_float_helpers.h"
#include "helpers.h"
#include "tile_helpers.h"
#if defined(INDIRECT_CONVOLUTION_ADDRESS_PRECALCULATION)
//! @cond Doxygen_Suppress
/** OpenCL kernel to compute the indirect convolution 2d indirect buffer.
*
* @note This kernel only works for unit batch_size
*
* @note The convolution padding (left and top) must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (e.g. -DPAD_LEFT=2, -DPAD_TOP=2)
* @note The convolution strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y (e.g. -DSTRIDE_X=2, -DSTRIDE_Y=2)
* @note The kernel width must be passed at compile time using -DWEI_CONV_WIDTH (e.g. -DWEI_CONV_WIDTH=9)
* @note The spatial dimensions of the source tensor used by conv2d must be passed at compile time using -DSRC_CONV_WIDTH and -DSRC_CONV_HEIGHT (e.g. -DSRC_CONV_WIDTH=96, -DSRC_CONV_HEIGHT=64)
* @note The width dimension of the destination tensor produced by conv2d must be passed at compile time using -DDST_CONV_WIDTH (e.g. -DDST_CONV_WIDTH=96)
* @note The tensor type ("BUFFER" only) of the destination tensor must be passed at compile time using -DDST_TENSOR_TYPE (e.g. -DDST_TENSOR_TYPE=BUFFER)
* @note The data type of the destination tensor must be passed at compile time using -DDST_DATA_TYPE (e.g. -DDST_DATA_TYPE=float)
* @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* - M0 = 1, 2, 3, 4, 5, 6, 7, and 8
*
* @param[out] dst_img (Not supported) CLImage object to the destination tensor (DST_TENSOR_TYPE=IMAGE only)
* @param[out] dst_ptr Pointer to the destination tensor. Supported data type: INT32
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] dst_c The size of the channels dimension of the destination tensor
* @param[in] dst_w The size of the width dimension of the destination tensor
* @param[in] dst_h The size of the height dimension of the destination tensor
* @param[in] dst_n The size of the batches dimension of the destination tensor
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
//! @endcond
__kernel void indirect_convolution_address_precalculation(
TENSOR4D_T(dst, DST_TENSOR_TYPE))
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int z = get_global_id(2);
// Note: WIDTH = M0 x KernelWidth x KernelHeight
// m index
const int mi = x % M0;
// Kernel index
const int ki = x / M0;
// Kernel width coordinate
const int xk = ki % WEI_CONV_WIDTH;
// kernel height coordinate
const int yk = ki / WEI_CONV_WIDTH;
TILE(DST_DATA_TYPE, 1, 1, xi);
TILE(DST_DATA_TYPE, 1, 1, yi);
TILE(DST_DATA_TYPE, 1, 1, my);
const int mout = y * M0;
xi[0].s[0] = ((mout + mi) % DST_CONV_WIDTH) * STRIDE_X;
yi[0].s[0] = ((mout + mi) / DST_CONV_WIDTH) * STRIDE_Y;
xi[0].s[0] -= PAD_LEFT;
yi[0].s[0] -= PAD_TOP;
const int x_s = xi[0].s[0] + xk;
const int y_s = yi[0].s[0] + yk;
my[0].s[0] = x_s + y_s * SRC_CONV_WIDTH;
my[0].s[0] = my[0].s[0] + z * (int)(SRC_CONV_WIDTH * SRC_CONV_HEIGHT);
my[0].s[0] = select(-1, my[0].s[0], x_s >= 0);
my[0].s[0] = select(-1, my[0].s[0], x_s < SRC_CONV_WIDTH);
my[0].s[0] = select(-1, my[0].s[0], y_s >= 0);
my[0].s[0] = select(-1, my[0].s[0], y_s < SRC_CONV_HEIGHT);
VSTORE(1)
(my[0].s[0], 0, (__global DST_DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(DST_DATA_TYPE) + y * dst_stride_y + z * dst_stride_z));
}
#endif // defined(INDIRECT_CONVOLUTION_ADDRESS_PRECALCULATION)
#if defined(INDIRECT_CONVOLUTION_NHWC)
//! @cond Doxygen_Suppress
/** OpenCL kernel to compute the indirect convolution.
*
* @note Data layout supported: NHWC
* @note Data type supported: F32/F16
* @note The spatial dimensions of the weights must be passed at compile time using -DWEI_WIDTH and -DWEI_HEIGHT (e.g. -DWEI_WIDTH=9, -DWEI_HEIGHT=9)
* @note The spatial dimensions of the destination tensor must be passed at compile time using -DDST_WIDTH and -DDST_HEIGHT (e.g. -DDST_WIDTH=96, -DDST_HEIGHT=64)
* @note The channels of the source tensor must be passed at compile time using -DSRC_CHANNELS (e.g. -DSRC_CHANNELS=64)
* @note The tensor type ("BUFFER" or "IMAGE") of the source tensor must be passed at compile time using -DSRC_TENSOR_TYPE (e.g. -DSRC_TENSOR_TYPE=BUFFER)
* @note The tensor type ("BUFFER" or "IMAGE") of the weights tensor must be passed at compile time using -DWEI_TENSOR_TYPE (e.g. -DWEI_TENSOR_TYPE=BUFFER)
* @note The tensor type ("BUFFER" or "IMAGE") of the destination tensor must be passed at compile time using -DDST_TENSOR_TYPE (e.g. -DDST_TENSOR_TYPE=BUFFER)
* @note The data type of the source tensor must be passed at compile time using -DSRC_DATA_TYPE (e.g. -DSRC_DATA_TYPE=float)
* @note The data type of the weights tensor must be passed at compile time using -DWEI_DATA_TYPE (e.g. -DWEI_DATA_TYPE=float)
* @note The data type of the destination tensor must be passed at compile time using -DDST_DATA_TYPE (e.g. -DDST_DATA_TYPE=float)
* @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of N0 output channels to process must be passed at compile time using -DN0 (e.g. -DN0=2)
* @note The number of K0 inner accumulations must be passed at compile time using -DK0 (e.g. -DK0=2)
* @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_N0 (e.g. -DPARTIAL_N0=1)
* @note The vector length used for loading the values from the indirect buffer should be passed at compile time using -DIND_BUFF_VEC_SIZE (e.g. -DIND_BUFF_VEC_SIZE=4)
* @note The activation function to fuse and corresponding A and B values should be passed at compile time using -DACTIVATION_TYPE, -DA_VAL, and -DB_VAL
* (e.g. -DFUNCTION_TYPE=lu_brelu_op, -DA_VAL=3.0, and -DB_VAL=1.0)
* @note Only the following configurations of M0, N0 and K0 are currently supported:
* - M0 = 1, 2, 3, 4, 5, 6, and 8
* - N0 = 2, 3, 4, 8, 16
* - K0 = 2, 3, 4, 8, 16 (only 4, 8 and 16 if WEI_TENSOR_TYPE=IMAGE)
*
* @param[in] src_img (Not supported) CLImage object to the source tensor (SRC_TENSOR_TYPE=IMAGE only)
* @param[in] src_ptr Pointer to the source tensor. Supported data type: F16/F32
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] src_c The size of the channels dimension of the source tensor
* @param[in] src_w The size of the width dimension of the source tensor
* @param[in] src_h The size of the height dimension of the source tensor
* @param[in] src_n The size of the batches dimension of the source tensor
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] off_img (Not supported) CLImage object to the indirect buffer tensor (OFF_TENSOR_TYPE=IMAGE only)
* @param[in] off_ptr Pointer to the indirect buffer tensor. Supported data type: INT32
* @param[in] off_stride_y Stride of the indirect buffer tensor in Y dimension (in bytes)
* @param[in] off_stride_z Stride of the indirect buffer tensor in Z dimension (in bytes)
* @param[in] off_stride_w Stride of the indirect buffer tensor in W dimension (in bytes)
* @param[in] off_c The size of the channels dimension of the indirect buffer tensor
* @param[in] off_w The size of the width dimension of the indirect buffer tensor
* @param[in] off_h The size of the height dimension of the indirect buffer tensor
* @param[in] off_n The size of the batches dimension of the indirect buffer tensor
* @param[in] off_offset_first_element_in_bytes The offset of the first element in the indirect buffer tensor
* @param[out] dst_img (Not supported) CLImage object to the destination tensor (DST_TENSOR_TYPE=IMAGE only)
* @param[out] dst_ptr Pointer to the destination tensor. Supported data type: same as the input tensor
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] dst_c The size of the channels dimension of the destination tensor
* @param[in] dst_w The size of the width dimension of the destination tensor
* @param[in] dst_h The size of the height dimension of the destination tensor
* @param[in] dst_n The size of the batches dimension of the destination tensor
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] wei_img (Optional) CLImage object to the destination tensor (WEI_TENSOR_TYPE=IMAGE only)
* @param[out] wei_ptr Pointer to the weights tensor. Supported data type: same as the input tensor
* @param[in] wei_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] wei_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] wei_stride_w Stride of the weights tensor in W dimension (in bytes)
* @param[in] wei_c The size of the channels dimension of the weights tensor
* @param[in] wei_w The size of the width dimension of the weights tensor
* @param[in] wei_h The size of the height dimension of the weights tensor
* @param[in] wei_n The size of the batches dimension of the weights tensor
* @param[in] wei_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[out] bia_img (Not supported) CLImage object to the destination tensor (BIA_TENSOR_TYPE=IMAGE only)
* @param[out] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: same as the input tensor
* @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes)
* @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes)
* @param[in] bia_stride_w (Optional) Stride of the bias tensor in W dimension (in bytes)
* @param[in] bia_c (Optional) The size of the channels dimension of the bias tensor
* @param[in] bia_w (Optional) The size of the width dimension of the bias tensor
* @param[in] bia_h (Optional) The size of the height dimension of the bias tensor
* @param[in] bia_n (Optional) The size of the batches dimension of the bias tensor
* @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor
*/
//! @endcond
__kernel void indirect_convolution_nhwc(
TENSOR4D_T(src, SRC_TENSOR_TYPE),
TENSOR4D_T(off, OFF_TENSOR_TYPE),
TENSOR4D_T(dst, DST_TENSOR_TYPE),
TENSOR4D_T(wei, WEI_TENSOR_TYPE)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(bia)
#endif // defined(HAS_BIAS)
)
{
// All the tensor dimensions are passed at compile time.
// In case of dynamic tensor support, the following dimensions should be passed as function argument.
#define _IWEI_WIDTH WEI_WIDTH
#define _IWEI_HEIGHT WEI_HEIGHT
#define _ISRC_CHANNELS SRC_CHANNELS
#define _IDST_WIDTH DST_WIDTH
#define _IDST_HEIGHT DST_HEIGHT
#define _IY_MULTIPLIER (_IWEI_WIDTH * _IWEI_HEIGHT)
const int cout = GET_SPATIAL_IDX(0, N0, PARTIAL_N0); // OFM
const int mout = GET_SPATIAL_IDX(1, M0, 0); // WIDTH x HEIGHT
const int bout = GET_SPATIAL_IDX(2, 1, 0); // BATCH SIZE IDX
off_offset_first_element_in_bytes += get_global_id(1) * off_stride_y;
off_offset_first_element_in_bytes += bout * off_stride_z;
// Initialize the accumulators
TILE(DST_DATA_TYPE, M0, N0, c);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
c[i].v = 0;
})
for(int i = 0; i < (_IWEI_WIDTH * _IWEI_HEIGHT); ++i)
{
TILE(int, 1, IND_BUFF_VEC_SIZE, my);
T_LOAD(int, 1, IND_BUFF_VEC_SIZE, OFF_TENSOR_TYPE, off, i * M0, 0, 1, 0, my);
int ck = 0;
for(; ck <= (_ISRC_CHANNELS - K0); ck += K0)
{
TILE(SRC_DATA_TYPE, M0, K0, a);
TILE(WEI_DATA_TYPE, N0, K0, b);
// Initialize tiles
LOOP_UNROLLING(int, i, 0, 1, M0,
{
a[i].v = 0.0;
})
LOOP_UNROLLING(int, i, 0, 1, N0,
{
b[i].v = 0.0;
})
// Load tile from the src tensor
T_LOAD2D_INDIRECT(SRC_DATA_TYPE, M0, K0, SRC_TENSOR_TYPE, src, ck, src_stride_y, my, a);
// Load tile from the weights tensor
T_LOAD(WEI_DATA_TYPE, N0, K0, WEI_TENSOR_TYPE, wei, ck, cout * _IY_MULTIPLIER + i, _IY_MULTIPLIER, wei_stride_y, b);
// Compute the matrix multiplication between two tiles
T_MMUL(SRC_DATA_TYPE, WEI_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, NT, T, a, b, c);
}
// This #if directive should be removed in case of dynamic tensor support
#if defined(LEFTOVER_LOOP)
// Left-over accumulations
for(; ck < _ISRC_CHANNELS; ++ck)
{
TILE(SRC_DATA_TYPE, M0, 1, a);
TILE(WEI_DATA_TYPE, N0, 1, b);
// Initialize tiles
LOOP_UNROLLING(int, i, 0, 1, M0,
{
a[i].v = 0.0;
})
LOOP_UNROLLING(int, i, 0, 1, N0,
{
b[i].v = 0.0;
})
// Load tile from the src tensor
T_LOAD2D_INDIRECT(SRC_DATA_TYPE, M0, 1, SRC_TENSOR_TYPE, src, ck, src_stride_y, my, a);
// Load tile from the weights tensor
// The T_LOAD for the left-over elements can only use BUFFER because we load one element per iteration
T_LOAD(WEI_DATA_TYPE, N0, 1, BUFFER, wei, ck, cout * _IY_MULTIPLIER + i, _IY_MULTIPLIER, wei_stride_y, b);
// Compute the matrix multiplication between two tiles
T_MMUL(SRC_DATA_TYPE, WEI_DATA_TYPE, DST_DATA_TYPE, M0, N0, 1, NT, T, a, b, c);
}
#endif // defined(LEFTOVER_LOOP)
}
#if defined(HAS_BIAS)
TILE(BIA_DATA_TYPE, 1, N0, bias0);
T_LOAD(BIA_DATA_TYPE, 1, N0, BUFFER, bia, cout, 0, 1, 0, bias0);
// c = c + bias[broadcasted]
T_ELTWISE_BROADCAST_ADD_X(DST_DATA_TYPE, M0, N0, c, bias0, c);
#endif // HAS_BIAS
// Apply activation
T_ACTIVATION(DST_DATA_TYPE, M0, N0, ACTIVATION_TYPE, A_VAL, B_VAL, c, c);
TILE(uint, M0, 1, dst_indirect_y);
// Calculate the destination indirect Y
LOOP_UNROLLING(int, i, 0, 1, M0,
{
dst_indirect_y[i].v = (uint)min(mout + i, (int)(_IDST_WIDTH * _IDST_HEIGHT) - 1);
dst_indirect_y[i].v += bout * (int)(_IDST_WIDTH * _IDST_HEIGHT);
})
const bool x_cond = PARTIAL_N0 != 0 && get_global_id(0) == 0;
// Store the tile in reverse order so the invalid values are overwritten with the valid ones
T_STORE_INDIRECT_WIDTH_SELECT(DST_DATA_TYPE, M0, N0, PARTIAL_N0, DST_TENSOR_TYPE, dst, cout, dst_stride_y, x_cond, c, dst_indirect_y);
#undef _IWEI_WIDTH
#undef _IWEI_HEIGHT
#undef _ISRC_CHANNELS
#undef _IDST_WIDTH
#undef _IDST_HEIGHT
#undef _IY_MULTIPLIER
}
#endif // defined(INDIRECT_CONVOLUTION_NHWC)