blob: bc339f176f0908f2a0e9183b61cfac429ed6baf6 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights()
: _weights_reshape_kernel()
{
}
void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(),
(biases != nullptr) ? biases->info() : nullptr,
output->info()));
const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr;
_weights_reshape_kernel.configure(weights, biases_to_use, output);
output->info()->set_quantization_info(weights->info()->quantization_info());
}
Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
CLWeightsReshapeKernel::validate(weights, biases, output);
}
return Status{};
}
void CLConvolutionLayerReshapeWeights::run()
{
CLScheduler::get().enqueue(_weights_reshape_kernel);
}
CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _col2im_kernel(), _im2col_output(),
_weights_reshaped(), _gemm_output(), _tmp_output(), _is_quantized(false), _is_first_run(true)
{
}
void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), output->info()));
if(_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
_mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
else
{
// Configure matrix multiply function
_mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
}
}
Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output)
{
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */);
if(is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->quantization_info();
const QuantizationInfo weights_quantization_info = weights->quantization_info();
std::unique_ptr<ITensorInfo> input_qa = input->clone();
std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
// Perform validation step on GEMMLowp
CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), output, gemm_info);
}
else
{
// Perform validation step on Matrix multiply function
CLGEMM::validate(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info);
}
return Status{};
}
void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
conv_info,
weights_info));
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
const DataType dt = input->info()->data_type();
// Set the GPU target for im2col and col2im
_im2col_kernel.set_target(CLScheduler::get().target());
_col2im_kernel.set_target(CLScheduler::get().target());
const bool append_bias = (biases != nullptr) && (!_is_quantized);
const unsigned bias_element = (append_bias) ? 1 : 0;
const ICLTensor *biases_to_use = (append_bias) ? biases : nullptr;
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
const unsigned int kernel_width = weights->info()->dimension(0);
const unsigned int kernel_height = weights->info()->dimension(1);
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
conv_info);
unsigned int mat_weights_cols = weights->info()->dimension(3);
unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
// _weights_reshaped will be auto configured in the kernel.
// Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM
_reshape_weights.configure(weights, biases_to_use, &_weights_reshaped);
weights = &_weights_reshaped;
// Create tensor to store im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position());
im2col_reshaped_info.set_quantization_info(input->info()->quantization_info());
_im2col_output.allocator()->init(im2col_reshaped_info);
_memory_group.manage(&_im2col_output);
// Create GEMM output tensor
TensorShape shape_gemm = _im2col_output.info()->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt;
// GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
// FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position());
info_gemm.set_quantization_info(output->info()->quantization_info());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
// Configure im2col
_im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias);
// Configure GEMM
configure_mm(&_im2col_output, weights, &_gemm_output);
_im2col_output.allocator()->allocate();
// Configure output stage for quantized case
if(_is_quantized)
{
const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
int output_multiplier, output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_memory_group.manage(&_tmp_output);
_gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output_quant_info.offset);
}
// Configure Col2Im
_col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, std::make_pair(conv_w, conv_h));
if(_is_quantized)
{
_tmp_output.allocator()->allocate();
}
_gemm_output.allocator()->allocate();
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Allocate intermediate tensor
_weights_reshaped.allocator()->allocate();
ARM_COMPUTE_UNUSED(weights_info);
}
Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != input->dimension(2));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const bool append_bias = (biases != nullptr) && (!is_quantized);
const unsigned bias_element = (append_bias) ? 1 : 0;
const DataType dt = input->data_type();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
const unsigned int kernel_width = weights->dimension(0);
const unsigned int kernel_height = weights->dimension(1);
std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height, conv_info);
unsigned int mat_weights_cols = weights->dimension(3);
unsigned int mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + bias_element;
CLConvolutionLayerReshapeWeights::validate(weights, biases, nullptr);
// Create tensor info for im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->fixed_point_position());
im2col_reshaped_info.set_quantization_info(input->quantization_info());
CLIm2ColKernel::validate(input, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias);
// Create GEMM output tensor
TensorShape shape_gemm = im2col_reshaped_info.tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
const DataType gemm_data_type = is_quantized ? DataType::S32 : dt;
// GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->fixed_point_position());
info_gemm.set_quantization_info(output->quantization_info());
validate_mm(&im2col_reshaped_info, weights, &info_gemm);
TensorInfo tmp_info(input->tensor_shape(), 1, DataType::QASYMM8, input->fixed_point_position());
if(is_quantized)
{
float multiplier = input->quantization_info().scale * weights->quantization_info().scale / output->quantization_info().scale;
int output_multiplier, output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
// Validate output stage for quantized case
CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&info_gemm, biases, &tmp_info, output->quantization_info().offset);
}
// Validate Col2Im
CLCol2ImKernel::validate(is_quantized ? &tmp_info : &info_gemm, output, std::make_pair(conv_w, conv_h));
if(biases != nullptr)
{
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
return Status{};
}
void CLGEMMConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(_is_first_run)
{
_reshape_weights.run();
_is_first_run = false;
}
_memory_group.acquire();
// Run im2col
CLScheduler::get().enqueue(_im2col_kernel);
// Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions
if(_is_quantized)
{
// Run gemmlowp
_mm_gemmlowp.run();
// Run output stage
_gemmlowp_output_stage.run();
}
else
{
// Run gemm
_mm_gemm.run();
}
// Reshape output matrix
CLScheduler::get().enqueue(_col2im_kernel, false);
_memory_group.release();
}