blob: c0f50beb2cc961b3f0d3ac379f5ca66267c1e40c [file] [log] [blame]
/*
* Copyright (c) 2017-2019 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include <algorithm>
#include "padding.hpp"
#include "utils.hpp"
#include "winograd.hpp"
#define MEMBERFN(RTYPE) template <\
int InnerTileRows, int InnerTileCols,\
typename TIn, typename TOut, WinogradRoots Roots\
> RTYPE InputTransform<InnerTileRows, InnerTileCols, TIn, TOut, Roots>
#define Nx1MEMBERFN(RTYPE) template <\
int InnerTileRows, typename TIn, typename TOut, WinogradRoots Roots\
> RTYPE InputTransform<InnerTileRows, 1, TIn, TOut, Roots>
namespace winograd
{
MEMBERFN()::InputTransform(
const int kernel_rows,
const int kernel_cols,
const int n_batches,
const int n_rows,
const int n_cols,
const int n_channels,
const int padding_top,
const int padding_left,
const int padding_bottom,
const int padding_right
) : _n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols), _n_channels(n_channels),
_inptr(nullptr), _outptr(nullptr),
_overlap_rows(kernel_rows - 1), _overlap_cols(kernel_cols - 1),
_padding_top(padding_top), _padding_left(padding_left), _padding_bottom(padding_bottom), _padding_right(padding_right),
_tiles_M(iceildiv(padding_top + n_rows + padding_bottom - kernel_rows + 1, InnerTileRows - kernel_rows + 1)),
_tiles_N(iceildiv(padding_left + n_cols + padding_right - kernel_cols + 1, InnerTileCols - kernel_cols + 1)),
_matrix_stride(0), _matrix_row_stride(0), _matrix_batch_stride(0),
_in_col_stride(0), _in_row_stride(0), _in_batch_stride(0),
_working_space_col_stride(n_channels),
_working_space_row_stride(InnerTileCols * _working_space_col_stride),
_working_space(nullptr)
{
}
MEMBERFN(void)::set_input_tensor(const void* const inptr)
{
set_input_tensor(inptr, _n_channels);
}
MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldcol)
{
set_input_tensor(inptr, _n_cols * ldcol, ldcol);
}
MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldrow, const int ldcol)
{
set_input_tensor(inptr, _n_rows * ldrow, ldrow, ldcol);
}
MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldbatch, const int ldrow, const int ldcol)
{
_inptr = static_cast<const TIn *>(inptr);
_in_batch_stride = ldbatch;
_in_row_stride = ldrow;
_in_col_stride = ldcol;
}
MEMBERFN(void)::set_output_matrices(void * const mptr, const int ldmatrix, const int ldrow)
{
_outptr = static_cast<TOut *>(mptr);
_matrix_stride = ldmatrix;
_matrix_row_stride = ldrow;
_matrix_batch_stride = _tiles_M * _tiles_N * ldrow;
}
Nx1MEMBERFN()::InputTransform(
const int kernel_rows,
const int kernel_cols,
const int n_batches,
const int n_rows,
const int n_cols,
const int n_channels,
const int padding_top,
const int padding_left,
const int padding_bottom,
const int padding_right
) : InputTransform<1, InnerTileRows, TIn, TOut, Roots>::InputTransform(
/* Transpose rows and columns */
kernel_cols, kernel_rows, n_batches, n_cols, n_rows, n_channels,
padding_left, padding_top, padding_right, padding_bottom
)
{
}
Nx1MEMBERFN(void)::set_input_tensor(const void* const inptr)
{
set_input_tensor(inptr, this->_n_channels);
}
Nx1MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldcol)
{
set_input_tensor(inptr, this->_n_cols * ldcol, ldcol);
}
Nx1MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldrow, const int ldcol)
{
set_input_tensor(inptr, this->_n_rows * ldrow, ldrow, ldcol);
}
Nx1MEMBERFN(void)::set_input_tensor(const void* const inptr, const int ldbatch, const int ldrow, const int ldcol)
{
// Transpose row and column strides
Base::set_input_tensor(inptr, ldbatch, ldcol, ldrow);
}
MEMBERFN(size_t)::get_working_space_size(const unsigned int nthreads) const
{
return sizeof(TIn) * InnerTileRows * _working_space_row_stride * nthreads;
}
MEMBERFN(void)::set_working_space(void * const buffer)
{
_working_space = static_cast<TIn *>(buffer);
}
MEMBERFN(unsigned int)::get_window(void) const
{
return iceildiv(_n_channels, WINDOW_BLOCK);
}
MEMBERFN(void)::run(
const unsigned int start,
const unsigned int stop,
const unsigned int threadid
)
{
// Determine the channels on which to work
if (start >= get_window())
{
return; // No work to do beyond the end of the window
}
const unsigned int start_channel = start * WINDOW_BLOCK;
const unsigned int stop_channel = std::min<unsigned int>(_n_channels , stop * WINDOW_BLOCK);
const unsigned int n_channels = stop_channel - start_channel;
// Loop over batches
for (int batch = 0; batch < _n_batches; batch++)
{
const TIn* const inptr_batch = _inptr + start_channel + batch*_in_batch_stride;
TOut* const outptr_batch = _outptr + start_channel + batch*_matrix_batch_stride;
// Loop over rows of tiles
for (int tile_i = 0; tile_i < _tiles_M; tile_i++)
{
// Compute the starting and ending row of pixels within the row of tiles,
// hence compute the padding to apply to the top and bottom of each tile.
const int row_top = tile_i * (InnerTileRows - _overlap_rows) - _padding_top;
const int row_bottom = row_top + InnerTileRows;
const int row_pad_top = std::max(0, _padding_top - tile_i * (InnerTileRows - _overlap_rows));
const int row_pad_bottom = std::max(0, row_bottom - _n_rows);
// Get a pointer to the start of the row.
const int row_offset = std::min(0, row_pad_top - _padding_top);
const TIn* const inptr_row = inptr_batch + _in_row_stride*(row_offset + tile_i*(InnerTileRows - _overlap_rows));
TOut* const outptr_row = outptr_batch + tile_i*_tiles_N*_matrix_row_stride;
// Loop over tiles within the row
for (int tile_j = 0; tile_j < _tiles_N; tile_j++)
{
// Compute the starting and ending column of pixels within the tile,
// hence compute the padding to apply to the left and right of the
// tile.
const int tile_left = tile_j * (InnerTileCols - _overlap_cols) - _padding_left;
const int tile_right = tile_left + InnerTileCols;
const int tile_pad_left = std::max(0, _padding_left - tile_j * (InnerTileCols - _overlap_cols));
const int tile_pad_right = std::max(0, tile_right - _n_cols);
// Get a pointer to the start of the tile.
const int col_offset = std::min(0, tile_pad_left - _padding_left);
const TIn* const inptr_tile = inptr_row + _in_col_stride*(col_offset + tile_j*(InnerTileCols - _overlap_cols));
TOut* const outptr_tile = outptr_row + tile_j * _matrix_row_stride;
// Transform the tile, applying padding if necessary.
if (row_pad_top || tile_pad_left || row_pad_bottom || tile_pad_right)
{
transform_padded_tile(
threadid, n_channels, outptr_tile, inptr_tile,
row_pad_top, tile_pad_left, row_pad_bottom, tile_pad_right
);
}
else
{
transform_unpadded_tile(threadid, n_channels, outptr_tile, inptr_tile);
}
}
}
}
}
MEMBERFN(void)::transform_unpadded_tile(
const unsigned int /* threadid unused */,
const int n_channels,
TOut * const outptr,
const TIn * const inptr
)
{
transform_tile(
n_channels, inptr, _in_row_stride, _in_col_stride, outptr, _matrix_stride
);
}
MEMBERFN(void)::transform_padded_tile(
const unsigned int threadid,
const int n_channels,
TOut * const outptr,
const TIn * const inptr,
const int padding_top,
const int padding_left,
const int padding_bottom,
const int padding_right
)
{
padding::copy_and_pad_tile(
InnerTileRows, InnerTileCols, n_channels,
inptr, _in_row_stride, _in_col_stride,
static_cast<TIn *>(get_working_space(threadid)), _working_space_row_stride, _working_space_col_stride,
padding_top, padding_left, padding_bottom, padding_right
);
transform_tile(
n_channels, static_cast<const TIn *>(get_working_space(threadid)),
_working_space_row_stride, _working_space_col_stride,
outptr, _matrix_stride
);
}
MEMBERFN(void *)::get_working_space(const unsigned int threadid) const
{
return _working_space + InnerTileRows * _working_space_row_stride * threadid;
}
} // namespace winograd