blob: fdc959c4a96cec88ebd989fb17adb2fcf5d44255 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
: _memory_group(std::move(memory_manager)),
_conv_f(),
_upsample_f(),
_flip_weights(),
_scaled_output(),
_weights_flipped(),
_original_weights(nullptr),
_input(nullptr),
_info(),
_inner_border(),
_is_prepared(false)
{
}
Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info,
unsigned int inner_border_right, unsigned int inner_border_top)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) < 1);
ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric());
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_right > stride_x - 1, "inner_border_right must be smaller than stride_x");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_top > stride_y - 1, "inner_border_top must be smaller than stride_y");
auto out_dims = deconvolution_output_dimensions(input->dimension(0), input->dimension(1), weights->dimension(0), weights->dimension(1),
info.pad().first, info.pad().second, stride_x, stride_y);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
}
if(output->tensor_shape().total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid.");
}
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady);
TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape));
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(i) != scale_out_info.dimension(i));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, WeightsInfo()));
return Status{};
}
void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info,
unsigned int inner_border_right, unsigned int inner_border_top)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
_input = input;
_original_weights = weights;
_info = info;
_inner_border = std::make_pair(inner_border_right, inner_border_top);
_is_prepared = false;
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
_weights_flipped.allocator()->init(TensorInfo(weights->info()->tensor_shape(), 1, weights->info()->data_type()));
_flip_weights.configure(weights, &_weights_flipped);
auto out_dims = deconvolution_output_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0), weights->info()->dimension(1),
info.pad().first, info.pad().second, stride_x, stride_y);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(NEDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info, inner_border_right, inner_border_top));
_memory_group.manage(&_scaled_output);
// Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady);
TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
_scaled_output.allocator()->init(scale_out_info);
const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2);
_upsample_f.configure(input, &_scaled_output, upsample_info, inner_border_right, inner_border_top);
// setup the function to convolve the upscaled output
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
_conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info);
_scaled_output.allocator()->allocate();
}
Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info)
{
return NEDeconvolutionLayer::validate(input, weights, bias, output, info, 0, 0);
}
void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info)
{
configure(input, weights, bias, output, info, 0, 0);
}
void NEDeconvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
_upsample_f.run();
_conv_f.run();
}
void NEDeconvolutionLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run weights flipping and mark original weights tensor as unused
_weights_flipped.allocator()->allocate();
NEScheduler::get().schedule(&_flip_weights, Window::DimZ);
_original_weights->mark_as_unused();
// Prepare convolution
_conv_f.prepare();
if(!_weights_flipped.is_used())
{
_weights_flipped.allocator()->free();
}
_is_prepared = true;
}
}