blob: e9be1a6dfc3ff943c5ff4071be10966aad516868 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
namespace
{
using ElementsProcessed = Steps;
Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
const GEMMReshapeInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.transpose);
ARM_COMPUTE_RETURN_ERROR_ON(!rhs_info.transpose);
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 != rhs_info.k0);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((lhs_info.k0 & (lhs_info.k0 - 1)) && lhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 > 16);
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 2 || lhs_info.m0 > 8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
const int m = gemm_info.m();
const int n = gemm_info.n();
const int k = gemm_info.k();
TensorShape tensor_shape0{ input0->tensor_shape() };
tensor_shape0.set(0, k);
tensor_shape0.set(1, m);
TensorShape tensor_shape1{ input1->tensor_shape() };
tensor_shape1.set(0, n);
tensor_shape1.set(1, k);
const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_lhs_reshaped_shape(tensor_info0, lhs_info));
const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
{
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
Window win{};
Window win_out{};
bool window_changed = false;
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)).set_data_type(DataType::S32));
TensorInfo tmp_info(*output);
if(reinterpret_output_as_3d)
{
// Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(output->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Configure kernel window
num_elems_processed_per_iteration_x = rhs_info.n0;
num_elems_processed_per_iteration_y = lhs_info.m0;
// Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
// The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
const int m = gemm_info.m();
const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input0_access(input0, 0, 0,
ceil_to_multiple(input0->dimension(0), num_elems_processed_per_iteration_y),
input0->dimension(1));
AccessWindowStatic input1_access(input1, 0, 0,
ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
input1->dimension(1));
AccessWindowStatic output_access(output, 0, 0,
ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
output->dimension(1) + bottom_pad);
window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
output_access.set_valid_region(win_out, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMLowpMatrixMultiplyReshapedKernel::CLGEMMLowpMatrixMultiplyReshapedKernel()
: _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_output_as_3d(false), _k(1)
{
}
void CLGEMMLowpMatrixMultiplyReshapedKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
const GEMMReshapeInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info));
_input0 = input0;
_input1 = input1;
_output = output;
_reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
_k = gemm_info.k();
// Check if we need to slide the matrix B
const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
_slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// Create build options
CLBuildOptions build_opts;
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
build_opts.add_option_if(_reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
build_opts.add_option_if(lhs_info.interleave, "-DLHS_INTERLEAVE");
build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(lhs_info.k0));
build_opts.add_option("-DV0=" + support::cpp11::to_string(lhs_info.v0));
build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
std::string kernel_name("gemmlowp_mm_reshaped_");
kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
kernel_name += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(gemm_info.k());
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.k0);
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.v0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.h0);
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.interleave);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.interleave);
}
Status CLGEMMLowpMatrixMultiplyReshapedKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, lhs_info, rhs_info, gemm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
input1->clone().get(),
output->clone().get(),
lhs_info,
rhs_info,
gemm_info,
num_elements_processed)
.first);
return Status{};
}
void CLGEMMLowpMatrixMultiplyReshapedKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
if(_input1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 4;
const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(!_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input0, slice);
add_2D_tensor_argument(idx, _input1, slice_b);
add_2D_tensor_argument(idx, _output, slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_k));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
enqueue(queue, *this, slice, lws_hint());
}
while(window.slide_window_slice_3D(slice));
}