blob: 2a01db78248351cc35c2a2019000802a733d682b [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/CL/gemm_reshaped/CLGEMMReshapedConfiguration.h"
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::cl_gemm;
namespace
{
inline bool is_gemm_reshaped(unsigned int m, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
{
return (get_arch_from_target(gpu_target) != GPUTarget::MIDGARD) && (m > 1) && (reshape_b_only_on_first_run);
}
} // namespace
CLGEMMLowpMatrixMultiplyCore::CLGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
_mm_kernel(),
_mm_reshaped_kernel(),
_mtx_a_reshape_kernel(),
_mtx_b_reshape_kernel(),
_mtx_a_reduction_kernel(),
_mtx_b_reduction_kernel(),
_offset_contribution_kernel(),
_offset_contribution_output_stage_kernel(),
_vector_sum_col(),
_vector_sum_row(),
_tmp_a(),
_tmp_b(),
_mm_result_s32(),
_original_b(nullptr),
_a_offset(0),
_b_offset(0),
_is_gemm_reshaped(true),
_reshape_b_only_on_first_run(false),
_is_prepared(false),
_fuse_output_stage(false)
{
}
void CLGEMMLowpMatrixMultiplyCore::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_ERROR_THROW_ON(CLGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
_is_prepared = false;
_original_b = b;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_a_offset = a->info()->quantization_info().offset;
_b_offset = b->info()->quantization_info().offset;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
// Set the target for the kernels
_mtx_a_reshape_kernel.set_target(gpu_target);
_mm_kernel.set_target(gpu_target);
const ICLTensor *matrix_a = a;
const ICLTensor *matrix_b = b;
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
const unsigned int n = b->info()->dimension(0);
const unsigned int k = a->info()->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->info()->dimension(3) : a->info()->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
// Check if we need to reshape the matrix A and matrix B
_is_gemm_reshaped = is_gemm_reshaped(m, _reshape_b_only_on_first_run, gpu_target);
if(_is_gemm_reshaped)
{
// if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
reinterpret_input_as_3d = false;
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedConfigurationFactory::create()->configure(m, n, k, batch_size, DataType::QASYMM8);
// Configure interleave kernel
_mtx_a_reshape_kernel.configure(a, &_tmp_a, lhs_info, gemm_info.reinterpret_input_as_3d());
// Configure transpose kernel
_mtx_b_reshape_kernel.configure(b, &_tmp_b, rhs_info);
}
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
{
TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
_vector_sum_col.allocator()->init(info_vector_sum_col);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_vector_sum_col);
}
// Configure Matrix B reduction kernel
_mtx_b_reduction_kernel.configure(b, &_vector_sum_col);
}
// Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32);
_vector_sum_row.allocator()->init(info_vector_sum_row);
_memory_group.manage(&_vector_sum_row);
// Configure matrix A reduction kernel
_mtx_a_reduction_kernel.configure(a, &_vector_sum_row);
}
// If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
_fuse_output_stage = true;
_memory_group.manage(&_mm_result_s32);
if(_is_gemm_reshaped)
{
// Configure and tune matrix multiply kernel
_mm_reshaped_kernel.configure(matrix_a, matrix_b, &_mm_result_s32, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
}
else
{
// Configure matrix multiply kernel
_mm_kernel.configure(matrix_a, matrix_b, &_mm_result_s32, false, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
}
// Configure offset contribution kernel
_offset_contribution_output_stage_kernel.configure(&_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output, a->info()->dimension(0),
_a_offset, _b_offset, gemm_info.gemmlowp_output_stage());
_mm_result_s32.allocator()->allocate();
}
else
{
if(_is_gemm_reshaped)
{
// Configure and tune matrix multiply kernel
_mm_reshaped_kernel.configure(matrix_a, matrix_b, output, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
}
else
{
// Configure matrix multiply kernel
_mm_kernel.configure(matrix_a, matrix_b, output, false, GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d));
}
// Configure offset contribution kernel
_offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, a->info()->dimension(0), _a_offset, _b_offset);
}
// Allocate tensors
if(_is_gemm_reshaped)
{
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
}
if(_b_offset != 0)
{
_vector_sum_row.allocator()->allocate();
}
}
Status CLGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
int32_t a_offset = a->quantization_info().offset;
int32_t b_offset = b->quantization_info().offset;
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
GEMMRHSMatrixInfo rhs_info;
GEMMLHSMatrixInfo lhs_info;
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
const unsigned int n = b->dimension(0);
const unsigned int k = a->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
bool reshape_matrices = is_gemm_reshaped(m, gemm_info.reshape_b_only_on_first_run(), CLScheduler::get().target());
// if reshape_matrices is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
if(reshape_matrices)
{
reinterpret_input_as_3d = false;
}
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, 1, 1, depth_output_gemm3d, reinterpret_input_as_3d);
if(reshape_matrices)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedConfigurationFactory::create()->configure(m, n, k, batch_size, DataType::QASYMM8);
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_lhs_reshaped_shape(*a, lhs_info, gemm_info.reinterpret_input_as_3d())));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeLHSMatrixKernel::validate(a, &tmp_a_info, lhs_info, gemm_info.reinterpret_input_as_3d()));
// Validate transpose kernel
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info)));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(b, &tmp_b_info, rhs_info));
}
TensorInfo info_vector_sum_col, info_vector_sum_row;
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
if(a_offset != 0)
{
info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
// Configure Matrix B reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col));
}
// Validate Matrix A reduction kernel only if _b_offset is not equal to 0
if(b_offset != 0)
{
info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row));
}
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
TensorInfo mm_result_s32_info{};
if(reshape_matrices)
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, reshape_info)).set_data_type(DataType::S32));
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, lhs_info, rhs_info, reshape_info));
}
else
{
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, false, reshape_info)).set_data_type(DataType::S32));
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info, false, reshape_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
output,
a_offset, b_offset,
gemm_info.gemmlowp_output_stage()));
}
else
{
if(reshape_matrices)
{
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyReshapedKernel::validate(matrix_a_info, matrix_b_info, output, lhs_info, rhs_info, reshape_info));
}
else
{
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output, false, reshape_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOffsetContributionKernel::validate(output,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c,
a_offset, b_offset));
}
return Status{};
}
void CLGEMMLowpMatrixMultiplyCore::run()
{
prepare();
_memory_group.acquire();
if(_is_gemm_reshaped)
{
// Run reshape matrix A
CLScheduler::get().enqueue(_mtx_a_reshape_kernel, false);
if(!_reshape_b_only_on_first_run)
{
// Run reshape matrix B
CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false);
}
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false);
}
// Run matrix multiply
if(_is_gemm_reshaped)
{
CLScheduler::get().enqueue(_mm_reshaped_kernel, false);
}
else
{
CLScheduler::get().enqueue(_mm_kernel, false);
}
// Run matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
CLScheduler::get().enqueue(_mtx_a_reduction_kernel, false);
}
if(_fuse_output_stage)
{
// Run offset contribution/output stage kernel
CLScheduler::get().enqueue(_offset_contribution_output_stage_kernel, true);
}
else
{
// Run offset contribution kernel
CLScheduler::get().enqueue(_offset_contribution_kernel, true);
}
_memory_group.release();
}
void CLGEMMLowpMatrixMultiplyCore::prepare()
{
if(!_is_prepared)
{
if(_is_gemm_reshaped && _reshape_b_only_on_first_run)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
// Run reshape kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
CLScheduler::get().enqueue(_mtx_b_reshape_kernel, false);
_original_b->mark_as_unused();
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && _reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
CLScheduler::get().enqueue(_mtx_b_reduction_kernel, false);
}
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
} // namespace arm_compute