blob: 836f8eddfe1423ed360df1cc37307dcd56fb17a3 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
#define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/GEMMLowp.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_c, int32_t a_offset, int32_t b_offset)
{
_target = compute_target(shape_a, shape_b, shape_c, a_offset, b_offset);
_reference = compute_reference(shape_a, shape_b, shape_c, a_offset, b_offset);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
std::uniform_int_distribution<> distribution(1, 254);
library->fill(tensor, distribution, i);
}
TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, int32_t a_offset, int32_t b_offset)
{
// Create tensors
TensorType a = create_tensor<TensorType>(shape_a, DataType::QASYMM8, 1);
TensorType b = create_tensor<TensorType>(shape_b, DataType::QASYMM8, 1);
TensorType c = create_tensor<TensorType>(shape_c, DataType::S32, 1);
a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset));
b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset));
// Create and configure function
// The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output
FunctionType gemmlowp;
// TODO (COMPMID-1672) - Extending the test to validate add bias in offset contribution
gemmlowp.configure(&a, &b, nullptr, &c, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_c[2] : 0), reinterpret_input_as_3d));
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
a.allocator()->allocate();
b.allocator()->allocate();
c.allocator()->allocate();
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(a), 0);
fill(AccessorType(b), 1);
// Compute GEMM function
gemmlowp.run();
return c;
}
SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, int32_t a_offset, int32_t b_offset)
{
TensorShape shape_a_to_use = shape_a;
if(reinterpret_input_as_3d)
{
// Collapse the second and third dimension if the input is 3D
shape_a_to_use.collapse(2U, 1U);
}
// Create reference
SimpleTensor<uint8_t> a{ shape_a_to_use, DataType::QASYMM8, 1 };
SimpleTensor<uint8_t> b{ shape_b, DataType::QASYMM8, 1 };
// Fill reference
fill(a, 0);
fill(b, 1);
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(a, b, shape_c, a_offset, b_offset);
}
TensorType _target{};
SimpleTensor<int32_t> _reference{};
};
template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
_reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
std::uniform_int_distribution<> distribution(-6000, 6000);
library->fill(tensor, distribution, i);
}
TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
TensorShape shape_bias(shape[0]);
// Create tensors
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);
// Create and configure function
FunctionType output_stage;
output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_offset, result_mult_int, result_shift, min, max);
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
a.allocator()->allocate();
c.allocator()->allocate();
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
fill(AccessorType(a), 0);
if(add_bias)
{
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate bias tensor
b.allocator()->allocate();
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
fill(AccessorType(b), 1);
}
// Compute GEMM function
output_stage.run();
return c;
}
SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
// Create reference
TensorShape shape_bias(shape[0]);
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
// Fill reference
fill(a, 0);
if(add_bias)
{
// Fill bias
fill(b, 1);
return reference::gemmlowp_quantize_down_int32_to_uint8_scale<int32_t>(a, b, result_offset, result_mult_int, result_shift, min, max);
}
else
{
return reference::gemmlowp_quantize_down_int32_to_uint8_scale<int32_t>(a, result_offset, result_mult_int, result_shift, min, max);
}
}
TensorType _target{};
SimpleTensor<uint8_t> _reference{};
};
template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
_reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
std::uniform_int_distribution<> distribution(-6000, 6000);
library->fill(tensor, distribution, i);
}
TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
{
TensorShape shape_bias(shape[0]);
// Create tensors
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);
// Create and configure function
FunctionType output_stage;
output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
a.allocator()->allocate();
c.allocator()->allocate();
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
fill(AccessorType(a), 0);
if(add_bias)
{
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate bias tensor
b.allocator()->allocate();
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensor
fill(AccessorType(b), 1);
}
// Compute GEMM function
output_stage.run();
return c;
}
SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max,
bool add_bias)
{
// Create reference
TensorShape shape_bias(shape[0]);
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
// Fill reference
fill(a, 0);
if(add_bias)
{
// Fill bias
fill(b, 1);
return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(a, b, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max);
}
else
{
return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(a, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max);
}
}
TensorType _target{};
SimpleTensor<uint8_t> _reference{};
};
template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyReshapedValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
bool interleave_rhs)
{
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0;
lhs_info.k0 = k0;
lhs_info.v0 = v0;
lhs_info.interleave = interleave_lhs;
lhs_info.transpose = false;
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = n0;
rhs_info.k0 = k0;
rhs_info.h0 = h0;
rhs_info.interleave = interleave_rhs;
rhs_info.transpose = true;
// Set the tensor shapes for LHS and RHS matrices
const TensorShape lhs_shape(k, m, batch_size);
const TensorShape rhs_shape(n, k, batch_size);
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info);
_reference = compute_reference(lhs_shape, rhs_shape);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
std::uniform_int_distribution<> distribution(1, 254);
library->fill(tensor, distribution, i);
}
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info)
{
// Create tensors
TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
TensorType lhs_reshaped;
TensorType rhs_reshaped;
TensorType dst;
const unsigned int M = lhs_shape[1];
const unsigned int N = rhs_shape[0];
const unsigned int K = lhs_shape[0];
// The output tensor will be auto-initialized within the function
// Create and configure function
ReshapeLHSFunctionType reshape_lhs;
ReshapeRHSFunctionType reshape_rhs;
GEMMFunctionType gemm;
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
lhs.allocator()->allocate();
rhs.allocator()->allocate();
lhs_reshaped.allocator()->allocate();
rhs_reshaped.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(lhs), 0);
fill(AccessorType(rhs), 1);
// Compute GEMM
reshape_lhs.run();
reshape_rhs.run();
gemm.run();
return dst;
}
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape)
{
TensorShape dst_shape = lhs_shape;
dst_shape[0] = rhs_shape[0];
dst_shape[1] = lhs_shape[1];
// Create reference
SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };
// Fill reference
fill(lhs, 0);
fill(rhs, 1);
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
}
TensorType _target{};
SimpleTensor<int32_t> _reference{};
};
template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
{
public:
template <typename...>
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0,
bool interleave_lhs, bool interleave_rhs)
{
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0;
lhs_info.k0 = k0;
lhs_info.v0 = v0;
lhs_info.interleave = interleave_lhs;
lhs_info.transpose = false;
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = n0;
rhs_info.k0 = k0;
rhs_info.h0 = h0;
rhs_info.interleave = interleave_rhs;
rhs_info.transpose = true;
// In case of GEMM3D, m is the product between m_w and m_h
const unsigned int m = m_w * m_h;
// Set the tensor shapes for LHS and RHS matrices
const TensorShape lhs_shape(k, m, batch_size);
const TensorShape rhs_shape(n, k, batch_size);
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h);
_reference = compute_reference(lhs_shape, rhs_shape, m_h);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
std::uniform_int_distribution<> distribution(1, 254);
library->fill(tensor, distribution, i);
}
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h)
{
// Create tensors
TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
TensorType lhs_reshaped;
TensorType rhs_reshaped;
TensorType dst;
const unsigned int M = lhs_shape[1];
const unsigned int N = rhs_shape[0];
const unsigned int K = lhs_shape[0];
// The output tensor will be auto-initialized within the function
// Create and configure function
ReshapeLHSFunctionType reshape_lhs;
ReshapeRHSFunctionType reshape_rhs;
GEMMFunctionType gemm;
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
lhs.allocator()->allocate();
rhs.allocator()->allocate();
lhs_reshaped.allocator()->allocate();
rhs_reshaped.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(lhs), 0);
fill(AccessorType(rhs), 1);
// Compute GEMM
reshape_lhs.run();
reshape_rhs.run();
gemm.run();
return dst;
}
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h)
{
TensorShape dst_shape = lhs_shape;
dst_shape.set(0, rhs_shape[0]);
dst_shape.set(1, lhs_shape[1] / m_h);
dst_shape.set(2, m_h);
dst_shape.set(3, lhs_shape[2]);
// Create reference
SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };
// Fill reference
fill(lhs, 0);
fill(rhs, 1);
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
}
TensorType _target{};
SimpleTensor<int32_t> _reference{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */