blob: cb4d87601c7b7f38e83a89c4ecdc9c3a0ad18a3b [file] [log] [blame]
/*
* Copyright (c) 2017-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tests/validation/Helpers.h"
#include "tests/framework/Asserts.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <tuple>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <>
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint8_t> &src)
{
const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = dequantize_qasymm8(src[i], quantization_info);
}
return dst;
}
template <>
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<int8_t> &src)
{
const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = dequantize_qasymm8_signed(src[i], quantization_info);
}
return dst;
}
template <>
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint16_t> &src)
{
const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = dequantize_qasymm16(src[i], quantization_info);
}
return dst;
}
template <>
SimpleTensor<uint8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
{
SimpleTensor<uint8_t> dst{ src.shape(), DataType::QASYMM8, 1, quantization_info };
const UniformQuantizationInfo &qinfo = quantization_info.uniform();
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = quantize_qasymm8(src[i], qinfo);
}
return dst;
}
template <>
SimpleTensor<int8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
{
SimpleTensor<int8_t> dst{ src.shape(), DataType::QASYMM8_SIGNED, 1, quantization_info };
const UniformQuantizationInfo &qinfo = quantization_info.uniform();
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = quantize_qasymm8_signed(src[i], qinfo);
}
return dst;
}
template <>
SimpleTensor<uint16_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
{
SimpleTensor<uint16_t> dst{ src.shape(), DataType::QASYMM16, 1, quantization_info };
const UniformQuantizationInfo &qinfo = quantization_info.uniform();
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = quantize_qasymm16(src[i], qinfo);
}
return dst;
}
template <>
SimpleTensor<int16_t> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
{
SimpleTensor<int16_t> dst{ src.shape(), DataType::QSYMM16, 1, quantization_info };
const UniformQuantizationInfo &qinfo = quantization_info.uniform();
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = quantize_qsymm16(src[i], qinfo);
}
return dst;
}
template <>
SimpleTensor<float> convert_from_symmetric(const SimpleTensor<int16_t> &src)
{
const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
#if defined(_OPENMP)
#pragma omp parallel for
#endif /* _OPENMP */
for(int i = 0; i < src.num_elements(); ++i)
{
dst[i] = dequantize_qsymm16(src[i], quantization_info);
}
return dst;
}
template <typename T>
void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out)
{
ARM_COMPUTE_ERROR_ON(a.shape()[0] != b.shape()[1]);
ARM_COMPUTE_ERROR_ON(a.shape()[1] != out.shape()[1]);
ARM_COMPUTE_ERROR_ON(b.shape()[0] != out.shape()[0]);
const int M = a.shape()[1]; // Rows
const int N = b.shape()[0]; // Cols
const int K = b.shape()[1];
#if defined(_OPENMP)
#pragma omp parallel for collapse(2)
#endif /* _OPENMP */
for(int y = 0; y < M; ++y)
{
for(int x = 0; x < N; ++x)
{
float acc = 0.0f;
for(int k = 0; k < K; ++k)
{
acc += a[y * K + k] * b[x + k * N];
}
out[x + y * N] = acc;
}
}
}
template <typename T>
void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out)
{
ARM_COMPUTE_ERROR_ON((in.shape()[0] != out.shape()[1]) || (in.shape()[1] != out.shape()[0]));
const int width = in.shape()[0];
const int height = in.shape()[1];
#if defined(_OPENMP)
#pragma omp parallel for collapse(2)
#endif /* _OPENMP */
for(int y = 0; y < height; ++y)
{
for(int x = 0; x < width; ++x)
{
const T val = in[x + y * width];
out[x * height + y] = val;
}
}
}
template <typename T>
void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord)
{
ARM_COMPUTE_ERROR_ON(tile.shape().num_dimensions() > 2);
const int w_tile = tile.shape()[0];
const int h_tile = tile.shape()[1];
// Fill the tile with zeros
std::fill(tile.data() + 0, (tile.data() + (w_tile * h_tile)), static_cast<T>(0));
// Check if with the dimensions greater than 2 we could have out-of-bound reads
for(size_t d = 2; d < Coordinates::num_max_dimensions; ++d)
{
if(coord[d] < 0 || coord[d] >= static_cast<int>(in.shape()[d]))
{
ARM_COMPUTE_ERROR("coord[d] < 0 || coord[d] >= in.shape()[d] with d >= 2");
}
}
// Since we could have out-of-bound reads along the X and Y dimensions,
// we start calculating the input address with x = 0 and y = 0
Coordinates start_coord = coord;
start_coord[0] = 0;
start_coord[1] = 0;
// Get input and roi pointers
auto in_ptr = static_cast<const T *>(in(start_coord));
auto roi_ptr = static_cast<T *>(tile.data());
const int x_in_start = std::max(0, coord[0]);
const int y_in_start = std::max(0, coord[1]);
const int x_in_end = std::min(static_cast<int>(in.shape()[0]), coord[0] + w_tile);
const int y_in_end = std::min(static_cast<int>(in.shape()[1]), coord[1] + h_tile);
// Number of elements to copy per row
const int n = x_in_end - x_in_start;
// Starting coordinates for the ROI
const int x_tile_start = coord[0] > 0 ? 0 : std::abs(coord[0]);
const int y_tile_start = coord[1] > 0 ? 0 : std::abs(coord[1]);
// Update input pointer
in_ptr += x_in_start;
in_ptr += (y_in_start * in.shape()[0]);
// Update ROI pointer
roi_ptr += x_tile_start;
roi_ptr += (y_tile_start * tile.shape()[0]);
for(int y = y_in_start; y < y_in_end; ++y)
{
// Copy per row
std::copy(in_ptr, in_ptr + n, roi_ptr);
in_ptr += in.shape()[0];
roi_ptr += tile.shape()[0];
}
}
template <typename T>
void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape)
{
ARM_COMPUTE_ERROR_ON(anchor.num_dimensions() != shape.num_dimensions());
ARM_COMPUTE_ERROR_ON(in.shape().num_dimensions() > 2);
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() > 2);
// Check if with the dimensions greater than 2 we could have out-of-bound reads
for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
{
if(anchor[d] < 0 || ((anchor[d] + shape[d]) > in.shape()[d]))
{
ARM_COMPUTE_ERROR("anchor[d] < 0 || (anchor[d] + shape[d]) > in.shape()[d]");
}
}
// Get input pointer
auto in_ptr = static_cast<T *>(in(anchor[0] + anchor[1] * in.shape()[0]));
const unsigned int n = in.shape()[0];
for(unsigned int y = 0; y < shape[1]; ++y)
{
std::fill(in_ptr, in_ptr + shape[0], 0);
in_ptr += n;
}
}
std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max)
{
ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
const int min_bound = quantize_qasymm8(min, quant_info.uniform());
const int max_bound = quantize_qasymm8(max, quant_info.uniform());
return std::pair<int, int> { min_bound, max_bound };
}
std::pair<int, int> get_quantized_qasymm8_signed_bounds(const QuantizationInfo &quant_info, float min, float max)
{
ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
const int min_bound = quantize_qasymm8_signed(min, quant_info.uniform());
const int max_bound = quantize_qasymm8_signed(max, quant_info.uniform());
return std::pair<int, int> { min_bound, max_bound };
}
std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id)
{
ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
const int min_bound = quantize_qsymm8_per_channel(min, quant_info, channel_id);
const int max_bound = quantize_qsymm8_per_channel(max, quant_info, channel_id);
return std::pair<int, int> { min_bound, max_bound };
}
void add_padding_x(std::initializer_list<ITensor *> tensors, const DataLayout &data_layout, bool only_right_pad)
{
if(data_layout == DataLayout::NHWC)
{
constexpr unsigned int lower = 1U;
constexpr unsigned int upper = 16U;
std::uniform_int_distribution<unsigned int> distribution(lower, upper);
size_t seed_offset = 0;
for(ITensor *tensor : tensors)
{
ARM_COMPUTE_ERROR_ON(!tensor->info()->is_resizable());
std::mt19937 gen(library->seed() + seed_offset++);
const unsigned int right = distribution(gen);
const unsigned int left = only_right_pad ? 0 : distribution(gen);
tensor->info()->extend_padding(PaddingSize(0U, right, 0U, left));
}
}
}
QuantizationHint suggest_conv_dst_q_info_and_bias(const QuantizationInfo &in_q_info,
const QuantizationInfo &weight_q_info,
int32_t height,
int32_t width,
int32_t channels,
DataType data_type,
float bias_fraction)
{
/** Quantization Setup of convolution
*
* Just like any other multiply-accummulate, convolution (2D) operation
* multiplies and accumulates the input and weight tensors. This operation
* takes place in three dimensions: height, width and channels. All of them
* belong to the weight tensor.
*
* The formula for simple convolution can be written as:
* C = sum_h sum_w sum_c(I[h_offset + h, w_offset + w, c] * W[h, w, c])
*
* Here, h_offset and w_offset are the starting positions in the image. Effects
* of paddings are ignored. This accumulation reduces to something like
*
* C = sum_m(I_index * W_hwc)
* where m is height x width x channels.
*
* Non-unit strides and/or dilations do not change the probabilistic nature of
* this sum because we always iterate as the size of the weight tensor.
*
* Paddings may affect this summation, but it's a boundary condition and so is
* neglected for brevity.
*/
return suggest_mac_dst_q_info_and_bias(in_q_info, weight_q_info, height * width * channels, data_type, bias_fraction);
}
QuantizationHint suggest_matmul_dst_q_info_and_bias(const QuantizationInfo &lhs_q_info,
const QuantizationInfo &rhs_q_info,
int32_t m, int32_t n, int32_t k, DataType data_type,
float bias_fraction)
{
ARM_COMPUTE_UNUSED(m, n);
/** Quantization Setup of matrix multiplication
*
* We have a matrix multiplication of the form C = A * B + D
* where A is (m X k), B is (k x n) and C is therefore (m x n).
* The bias, D is (1 x n).
*
* If we have some distributional statistics of A, B and D, i.e. mean and variance,
* we can estimate the mean and variance of a single value in C matrix and pick
* good scale and offset values for the output and have non-saturated tests.
*
* Each element in the output matrix can be calculated as follows:
* C_ij = sum_k(A_ik * B_kj) + D_j
*
* Note: All possible A_ik, B_kj, D_j random variables are assumed mutually independent.
* Note: In quantized operators, bias is an integer. But, its quantization scale is
* assumed to be equal to lhs_scale * rhs_scale, and offset equal to 0.
* Note: Since, bias is an integer that should be given as input, we need to pick responsible
* values when adding it on top of the summation. This is where "bias_fraction" comes
* into play. Based on the fraction given, we also return suggested bias range (min/max)
* for not saturating the output.
*
* Because all random variables are mutually independent, any C_ij has the same statistics,
* which is why we return a single destination quantization info object; which is why we can
* resort to a more general calculation explained in suggest_mac_dst_q_info_and_bias().
*
* From a probabilistic perspective, the above calculation reduces to
* c = sum_k (a_k * b_k) + d
*/
return suggest_mac_dst_q_info_and_bias(lhs_q_info, rhs_q_info, k, data_type, bias_fraction);
}
QuantizationHint suggest_mac_dst_q_info_and_bias(
const QuantizationInfo &a_q_info, const QuantizationInfo &b_q_info, int32_t K, DataType data_type, float bias_fraction)
{
QuantizationInfo c_q_info;
ARM_COMPUTE_ASSERT(data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED);
const int32_t t_max = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::max() : std::numeric_limits<int8_t>::max());
const int32_t t_min = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::min() : std::numeric_limits<int8_t>::min());
/** Quantization Setup of multiply-accummulate
*
* Expression (in float):
* C = sum_k ( A_k * B_k ) + D
*
* Lemma: An affine transformation (i.e. aX + b) to a discrete uniform random variable
* creates another discrete uniform random variable.
*
* Terminology:
* E[X]: Mean of the random variable X (sometimes referred as mu_x)
* var(X): Variance of the random variable X (someimes referred as sigma^2_x)
* std(X): sqrt(var(X)), standard deviation of X
*
* 1) Calculate the mean:
* E[C] = sum_k( E[A_k] * E[B_k] ) + D = K * mean_a * mean_b + mean_d
*
* Since elements of A and B are uniformly distributed random variables, we have
* mean_a = (max_a + min_a) / 2, mean_b = (max_b + min_b ) / 2
* max_a and min_a can be calculated with the scale_a/b and offset_a/b
* by replacing data type minimum and maximums in the equations
*
* We don't know mean_d because we have to choose it based on bias_fraction. If we call
* the summation as M_int, similar to above, we have:
*
* E[C_int] = sum_k( E[A_k_int] * E[B_k_int] ) + E[D_int] = K * mean_a_int * mean_b_int + mean_d_int
* \___________________________/
* E[M_int]
*
* We choose a bias mean proportional to the integer summation. This proportion is "bias_fraction".
* So, we have D_int = f * M_int (f: fraction), and
* E[D_int] = mean_d_int = f * E[M_int]
*
* This also means, for floating point value of D, the following:
* E[D] = mean_d = E[D_int] * a_scale * b_scale
*
* 2) Calculate the variance:
* var(C) = sum_k( var(A_k * B_k) ) + var(D)
* = sum_k ( E[A_k^2 * B_k^2] - E[A_k]^2E[B_k^2] )
* = ...
* = K * (var_a * var_b + var_a * mean^2_b + var_b * mean^2_a) + var_d
*
* Similarly, due to uniform random variable properties, we have
* var_a = (max_a - min_a)^2 / 12
* var_b = (max_b - min_b)^2 / 12
*
* Again, we don't know var_d as we don't know the bias. As set out in the previous section, we have
* var(D_int) = var(f * M_int) = f^2 * var(M_int)
*
* Using the same expression, we can find var(M_int):
* var(C_int) = sum_k( var(A_k_int * B_k_int) ) + var(D_int)
* = sum_k ( E[A_k_int^2 * B_k_int^2] - E[A_k_int]^2E[B_k_int^2] )
* = ...
* = K * (var_a_int * var_b_int + var_a_int * mean^2_b_int + var_b_int * mean^2_a_int) + var_d_int
* \_______________________________________________________________________________/
* var(M_int)
*
* Now, we know mean and variance of D_int, we can return a suitable bias range with
* [mean_d_int +/- 2 * std_d_int]
*
* This also means, for floating point value of D, the following:
* var(D) = var_d = var(D_int) * a_scale^2 * b_scale^2
*
* E[D] and var(D) calculated in steps (1) and (2) can be substituted into E[C] and var(C) calculatons.
*
* 3) Now, we have an idea of what would an average C will look like and how much deviation
* is present around it. The exact distribution of C is difficult to come up with dependent on K.
* But, as K increases, due to Central Limit Theorem, it'll look more like a bell shaped figure,
* approaching normal distribution.
*
* This is useful because, in normal distribution, we know that values +- 2 std_deviation around
* the mean constitute 95% of the values. Therefore, setting a plausible range for us:
* C_range = [C_min, C_max] = [mean_c - 2 * std_c, mean_c + 2 * std_c]
*
* 4)
* If we map this [C_min, C_max] to [0, 255] or [-128, 127] depending on the signedness of the
* data type, we can find a suitable scale and offset for the output. On average, it's expected
* that 5% of the output values will saturate and 95% will remain in the range.
*
* The equations to be solved for offset_c and scale_c are:
* C_min = scale_c * (type_min - offset_c)
* C_max = scale_c * (type_max - offset_c)
*/
const int32_t a_offset = a_q_info.uniform().offset;
const float a_scale = a_q_info.uniform().scale;
const int32_t b_offset = b_q_info.uniform().offset;
const float b_scale = b_q_info.uniform().scale;
// Integer value statistics. Valid for both Lhs/A and Rhs/B
const float mean_a_int = (t_max + t_min) / 2.f;
constexpr float var_a_int = (256 * 256 - 1) / 12.f; // Discrete uniform RV variance
const float mean_b_int = mean_a_int; // A_int and B_int has the same stats
constexpr float var_b_int = var_a_int;
// Lhs/A stats
const float max_a = (t_max - a_offset) * a_scale;
const float min_a = (t_min - a_offset) * a_scale;
const float mean_a = (max_a + min_a) / 2;
const float var_a = (max_a - min_a) * (max_a - min_a) / 12;
// Rhs/B stats
const float max_b = (t_max - b_offset) * b_scale;
const float min_b = (t_min - b_offset) * b_scale;
const float mean_b = (max_b + min_b) / 2;
const float var_b = (max_b - min_b) * (max_b - min_b) / 12;
// Integer multiplication output/M stats
const float mean_m_int = K * mean_a_int * mean_b_int;
const float var_m_int = K * (var_a_int * var_b_int + mean_a_int * var_b_int + mean_b_int + var_a_int);
const float std_m_int = sqrt(var_m_int);
// Bias/D both Int and Float statistics
const float mean_d_int = bias_fraction * mean_m_int;
const float std_d_int = bias_fraction * std_m_int;
const float mean_d = a_scale * b_scale * mean_d_int;
const float std_d = a_scale * b_scale * std_d_int;
const float var_d = std_d * std_d;
// Also calculate the suggested bias range
const int32_t min_bias = mean_d_int - 2 * std_d_int;
const int32_t max_bias = mean_d_int + 2 * std_d_int;
// Output/C stats
const float mean_out = K * mean_a * mean_b + mean_d;
const float var_out = K * (var_a * var_b + var_a * mean_b * mean_b + var_b * mean_a * mean_a) + var_d;
const float std_out = sqrt(var_out);
// Output quantization setup
const float scale_out = 4 * std_out / 255;
const int32_t offset_out = static_cast<int32_t>(t_min - (mean_out - 2.f * std_out) / scale_out);
c_q_info = QuantizationInfo(scale_out, offset_out);
return { c_q_info, min_bias, max_bias };
}
template void get_tile(const SimpleTensor<float> &in, SimpleTensor<float> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<half> &in, SimpleTensor<half> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<int> &in, SimpleTensor<int> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<short> &in, SimpleTensor<short> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<char> &in, SimpleTensor<char> &roi, const Coordinates &coord);
template void zeros(SimpleTensor<float> &in, const Coordinates &anchor, const TensorShape &shape);
template void zeros(SimpleTensor<half> &in, const Coordinates &anchor, const TensorShape &shape);
template void transpose_matrix(const SimpleTensor<float> &in, SimpleTensor<float> &out);
template void transpose_matrix(const SimpleTensor<half> &in, SimpleTensor<half> &out);
template void transpose_matrix(const SimpleTensor<int> &in, SimpleTensor<int> &out);
template void transpose_matrix(const SimpleTensor<short> &in, SimpleTensor<short> &out);
template void transpose_matrix(const SimpleTensor<char> &in, SimpleTensor<char> &out);
template void transpose_matrix(const SimpleTensor<int8_t> &in, SimpleTensor<int8_t> &out);
template void transpose_matrix(const SimpleTensor<uint8_t> &in, SimpleTensor<uint8_t> &out);
template void matrix_multiply(const SimpleTensor<float> &a, const SimpleTensor<float> &b, SimpleTensor<float> &out);
template void matrix_multiply(const SimpleTensor<half> &a, const SimpleTensor<half> &b, SimpleTensor<half> &out);
} // namespace validation
} // namespace test
} // namespace arm_compute