blob: 6f204642ca03e53823afd0ad6bb2103a1a118175 [file] [log] [blame]
/*
* Copyright (c) 2017-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/fixtures/ConvolutionLayerFixture.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationGenericFixture : public framework::Fixture
{
public:
using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
void setup_quantization(const TensorShape &input_shape, const TensorShape &weights_shape, QuantizationInfo &input_q_info,
QuantizationInfo &weights_q_info, DataType data_type)
{
const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
std::mt19937 generator(library->seed() + _hash);
std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
const int32_t offset_lhs = distribution_t(generator);
const int32_t offset_rhs = distribution_t(generator);
input_q_info = QuantizationInfo(scale_lhs, offset_lhs);
weights_q_info = QuantizationInfo(scale_rhs, offset_rhs);
QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info,
weights_shape.y() /* heights */, weights_shape.x() /* width */, input_shape.z() /* channels */,
data_type, 0.5f /* bias_fraction */);
_dst_q_info = q_hint.q_info;
_min_bias = q_hint.bias_min;
_max_bias = q_hint.bias_max;
// Do not change here as these limits are the natural limits of the associated data types and
// are embeded in the computation of the dst quantization info.
_min_u8 = 0;
_max_u8 = 255;
_min_s8 = -128;
_max_s8 = 127;
}
void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels,
DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout, bool mixed_layout = false)
{
// This hash is used by random generators. There may be hash collisions but
// this is intentional as it's a very easy way to make the the current
// random generation process almost different for many test configurations,
// which were using the same set of values before.
_hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] +
stride_x + stride_y + pad_x + pad_y + kernel_size + num_kernels + mixed_layout
+ (data_layout == DataLayout::NHWC);
_data_type = data_type;
_mixed_layout = mixed_layout;
TensorShape weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels);
const TensorShape bias_shape(num_kernels);
const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
TensorInfo input_info = TensorInfo(input_shape, 1, data_type);
TensorInfo weights_info = TensorInfo(weights_shape, 1, data_type);
const TensorShape output_shape = compute_deep_convolution_shape(input_info, weights_info, info);
QuantizationInfo input_q_info = quantization_info;
QuantizationInfo weights_q_info = quantization_info;
_dst_q_info = quantization_info;
if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
{
setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type);
}
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout);
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info);
}
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
{
ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN);
ARM_COMPUTE_UNUSED(dilation);
// This hash is used by random generators. There may be hash collisions but
// this is intentional as it's a very easy way to make the the current
// random generation process almost different for many test configurations,
// which were using the same set of values before.
_hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] +
weights_shape[0] + weights_shape[1] + weights_shape[2] + weights_shape[3] + dilation.x() +
dilation.y() + info.pad_bottom() + info.pad_left() + info.pad_right() + info.pad_top();
_data_type = data_type;
const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
QuantizationInfo input_q_info = quantization_info;
QuantizationInfo weights_q_info = quantization_info;
_dst_q_info = quantization_info;
if(is_data_type_quantized(data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
{
setup_quantization(input_shape, weights_shape, input_q_info, weights_q_info, data_type);
}
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info, data_layout);
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, input_q_info, weights_q_info, act_info);
}
protected:
void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
{
DataLayout data_layout = src.info()->data_layout();
// Test Multi DataLayout graph cases, when the data layout changes after configure
src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
// Compute Convolution function
layer.run();
// Reinstating original data layout for the test suite to properly check the values
src.info()->set_data_layout(data_layout);
dst.info()->set_data_layout(data_layout);
}
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::QASYMM8:
{
std::uniform_int_distribution<uint32_t> distribution(_min_u8, _max_u8);
library->fill(tensor, distribution, i);
break;
}
case DataType::QASYMM8_SIGNED:
{
// Use small input range to avoid all the test results being saturated at the end.
std::uniform_int_distribution<int32_t> distribution(_min_s8, _max_s8);
library->fill(tensor, distribution, i);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info, const DataLayout &data_layout)
{
if(data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
permute(output_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, input_q_info, data_layout);
TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, weights_q_info, data_layout);
TensorType bias = create_tensor<TensorType>(bias_shape, bias_data_type, 1, QuantizationInfo());
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, _dst_q_info, data_layout);
add_padding_x({ &src, &bias, &dst }, data_layout);
add_padding_x({ &weights }, data_layout, input_shape[0] % 4 == 0); // Don't add left padding if cl image will be used
// Create and configure function
FunctionType conv;
conv.configure(&src, &weights, &bias, &dst, info, act_info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
// Allocate tensors
src.allocator()->allocate();
weights.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0 + _hash);
fill(AccessorType(weights), 1 + _hash);
fill(AccessorType(bias), 2 + _hash);
if(_mixed_layout)
{
mix_layout(conv, src, dst);
}
else
{
// Compute Convolution function
conv.run();
}
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
DataType data_type, DataType bias_data_type, QuantizationInfo input_q_info, QuantizationInfo weights_q_info, ActivationLayerInfo act_info)
{
// Create reference
SimpleTensor<T> src{ input_shape, data_type, 1, input_q_info };
SimpleTensor<T> weights{ weights_shape, data_type, 1, weights_q_info };
SimpleTensor<TBias> bias{ bias_shape, bias_data_type, 1, QuantizationInfo() };
// Fill reference
fill(src, 0 + _hash);
fill(weights, 1 + _hash);
fill(bias, 2 + _hash);
SimpleTensor<T> dst = reference::convolution_layer<T>(src, weights, bias, output_shape, info,
Size2D(1U, 1U) /* dilation */, 1 /* num_groups */, _dst_q_info);
SimpleTensor<T> dst2 = (act_info.enabled()) ? reference::activation_layer<T>(dst, act_info) : dst;
return dst2;
}
TensorType _target{};
SimpleTensor<T> _reference{};
QuantizationInfo _dst_q_info{};
DataType _data_type{};
bool _mixed_layout{ false };
int32_t _hash{0};
// Random initialization limits
// Default values are previously handcrafted limits
// that sould be used when we don't use dynamic quantization
int32_t _min_bias{-5};
int32_t _max_bias{5};
int32_t _min_u8{0};
int32_t _max_u8{50};
int32_t _min_s8{-25};
int32_t _max_s8{25};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info,
DataLayout data_layout)
{
DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, QuantizationInfo(),
act_info, data_layout, mixed_layout);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info,
ActivationLayerInfo act_info, DataLayout data_layout)
{
DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, quantization_info,
act_info, data_layout, mixed_layout);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
{
DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, quantization_info,
act_info, data_layout);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
DataType data_type, ActivationLayerInfo act_info)
{
DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, QuantizationInfo(),
act_info, DataLayout::NCHW);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_DIRECTCONVOLUTIONLAYERFIXTURE_H