blob: 700175880b1babbb6a73cd6b5ea3a97370415b48 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*asymm_int_mult
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, asymm_int_multDAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__
#define __ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "tests/validation/FixedPoint.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/UtilsQuantizedAsymm.h"
namespace arm_compute
{
namespace test
{
namespace convolution_3d
{
namespace detail
{
inline bool is_valid_pixel(int i, int min, int max)
{
return (i >= min && i < max);
}
// 3D convolution for floating point type
template < typename T, typename TB, typename std::enable_if < validation::is_floating_point<T>::value &&validation::is_floating_point<TB>::value, int >::type = 0 >
inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1)
{
const T *in_ptr = in.data() + i_offset;
const T *w_ptr = weights.data() + w_offset;
const TB *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
const int half_width_weights_start = width_weights / 2;
const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
const int half_height_weights_start = height_weights / 2;
const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
// Reset accumulator
T acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
{
for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
{
const int idx = xk + half_width_weights_start;
const int idy = yk + half_height_weights_start;
const T i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
const T w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += i_value * w_value;
}
}
}
}
// Accumulate the bias and store the result
*out_ptr = acc + (*b_ptr);
}
// 3D convolution for fixed point type
template < typename T, typename TB, typename std::enable_if < std::is_integral<T>::value &&std::is_integral<TB>::value, int >::type = 0 >
inline void convolution3d(const SimpleTensor<T> &in, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x = 1, int dilation_y = 1)
{
const T *in_ptr = in.data() + i_offset;
const T *w_ptr = weights.data() + w_offset;
const T *b_ptr = bias.data() + b_offset;
T *out_ptr = out.data() + o_offset;
int fixed_point_position = in.fixed_point_position();
const int half_width_weights_start = width_weights / 2;
const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
const int half_height_weights_start = height_weights / 2;
const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
using namespace fixed_point_arithmetic;
using promoted_type = fixed_point_arithmetic::traits::promote_t<T>;
// Reset accumulator
fixed_point<promoted_type> acc(0, fixed_point_position);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
{
for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
{
const int idx = xk + half_width_weights_start;
const int idy = yk + half_height_weights_start;
const fixed_point<promoted_type> i_value(in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in], fixed_point_position, true);
const fixed_point<promoted_type> w_value(w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights], fixed_point_position, true);
const fixed_point<promoted_type> iw = i_value * w_value;
acc = iw + acc;
}
}
}
}
// Get the bias
const fixed_point<promoted_type> b(*b_ptr, fixed_point_position, true);
// Accumulate the bias and covert back
acc = acc + b;
fixed_point<T> res(acc);
*out_ptr = res.raw();
}
// 3D convolution for QASYMM8 type
template <>
inline void convolution3d(const SimpleTensor<uint8_t> &in, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<uint8_t> &out,
int i_offset, int w_offset, int b_offset, int o_offset,
int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int dilation_x, int dilation_y)
{
const uint8_t *in_ptr = in.data() + i_offset;
const uint8_t *w_ptr = weights.data() + w_offset;
const int32_t *b_ptr = bias.data() + b_offset;
uint8_t *out_ptr = out.data() + o_offset;
const int input_offset = -in.quantization_info().offset;
const float input_scale = in.quantization_info().scale;
const int weights_offset = -weights.quantization_info().offset;
const float weights_scale = weights.quantization_info().scale;
const int output_offset = out.quantization_info().offset;
const float output_scale = out.quantization_info().scale;
int output_multiplier = 0;
int output_shift = 0;
const float multiplier = input_scale * weights_scale / output_scale;
arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
const int half_width_weights_start = width_weights / 2;
const int half_width_weights_end = ((width_weights % 2) == 0) ? (half_width_weights_start - 1) : half_width_weights_start;
const int half_height_weights_start = height_weights / 2;
const int half_height_weights_end = ((height_weights % 2) == 0) ? (half_height_weights_start - 1) : half_height_weights_start;
// Reset accumulator
int32_t acc(0);
// Compute a 2D convolution for each IFM and accumulate the result
for(int ifm = 0; ifm < depth_in; ++ifm)
{
// Compute the offset for the input slice
const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;
// Compute 2D convolution
for(int yk = -half_height_weights_start; yk <= half_height_weights_end; ++yk)
{
for(int xk = -half_width_weights_start; xk <= half_width_weights_end; ++xk)
{
// Check if the pixel is out-of-bound
if(is_valid_pixel(xi + xk * dilation_x, 0, width_in) && is_valid_pixel(yi + yk * dilation_y, 0, height_in))
{
const int idx = xk + half_width_weights_start;
const int idy = yk + half_height_weights_start;
const uint8_t i_value = in_ptr[offset_slice_in + xk * dilation_x + yk * dilation_y * width_in];
const uint8_t w_value = w_ptr[idx + idy * width_weights + ifm * width_weights * height_weights];
acc += (i_value + input_offset) * (w_value + weights_offset);
}
}
}
}
// Accumulate the bias
acc += (*b_ptr);
acc = validation::asymm_rounding_divide_by_pow2(validation::asymm_int_mult(acc, output_multiplier), output_shift);
acc += output_offset;
acc = utility::clamp<int32_t>(acc, 0, 255);
// Store the result
*out_ptr = acc;
}
} // namespace detail
} // namespace convolution_3d
} // namespace test
} // namespace arm_compute
#endif /*__ARM_COMPUTE_TEST_VALIDATION_CONVOLUTION_H__ */