blob: c0515f2abc8067c251fac30d2adf00a6ce766f75 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/elementwise_binary/generic/sve/impl.h"
#include "src/core/NEON/SVEMath.h"
#include <arm_sve.h>
namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::wrapper;
template <typename ScalarType>
void elementwise_arithmetic_op(const ITensor *in1, const ITensor *in2, ITensor *out, ArithmeticOperation op, const Window &window)
{
using VectorType = typename sve_vector<ScalarType>::type;
const auto all_true_pg = svptrue<ScalarType>();
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
const ScalarType broadcast_value = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
const auto broadcast_vector = svdup_n(broadcast_value);
int x = window_start_x;
svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
do
{
const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
VectorType res{};
if(is_broadcast_input_2)
{
res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, non_broadcast_vector, broadcast_vector, op);
}
else
{
res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, broadcast_vector, non_broadcast_vector, op);
}
svst1(pg, output_ptr + x, res);
x += svcnt<ScalarType>();
pg = svwhilelt<ScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
int x = window_start_x;
svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
do
{
const auto in1 = svld1(pg, input1_ptr + x);
const auto in2 = svld1(pg, input2_ptr + x);
const auto res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, in1, in2, op);
svst1(pg, output_ptr + x, res);
x += svcnt<ScalarType>();
pg = svwhilelt<ScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
input1, input2, output);
}
}
template void elementwise_arithmetic_op<float32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
template void elementwise_arithmetic_op<float16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
template void elementwise_arithmetic_op<int16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
template void elementwise_arithmetic_op<int32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
template <typename InputScalarType, typename OutputScalarType>
void elementwise_comparison_op(const ITensor *in1, const ITensor *in2, ITensor *out, ComparisonOperation op, const Window &window)
{
static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width");
using OutputVectorType = typename sve_vector<OutputScalarType>::type;
const auto all_true_pg = svptrue<InputScalarType>();
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
const auto broadcast_vector = svdup_n(broadcast_value);
int x = window_start_x;
svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
do
{
const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
OutputVectorType res{};
if(is_broadcast_input_2)
{
res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, non_broadcast_vector, broadcast_vector, op);
}
else
{
res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, broadcast_vector, non_broadcast_vector, op);
}
svst1(output_pg, output_ptr + x, res);
x += svcnt<InputScalarType>();
pg = svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = window_start_x;
svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
do
{
const auto in1 = svld1(pg, input1_ptr + x);
const auto in2 = svld1(pg, input2_ptr + x);
const auto res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, in1, in2, op);
const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
svst1(output_pg, output_ptr + x, res);
x += svcnt<InputScalarType>();
pg = svwhilelt<InputScalarType>(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
input1, input2, output);
}
}
template void elementwise_comparison_op<float32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
template void elementwise_comparison_op<float16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
template void elementwise_comparison_op<uint8_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
template void elementwise_comparison_op<int16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
template void elementwise_comparison_op<int32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
template <>
svint32_t elementwise_pow<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
{
return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
}
template <>
svint32_t elementwise_div<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
{
return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
}
template <>
svint16_t elementwise_div<svint16_t>(svbool_t &pg, const svint16_t &a, const svint16_t &b)
{
ARM_COMPUTE_UNUSED(pg, a, b);
ARM_COMPUTE_ERROR("Not supported");
}
} // namespace cpu
} // namespace arm_compute