blob: 72fe3d3b892c53c8cf6aa53d8742083b46bd8751 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "activation_float_helpers.h"
#include "helpers.h"
#include "tile_helpers.h"
#if defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_MMUL)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices using the MMUL extension:
*
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref ClGemmMatrixMultiplyReshapedOnlyRhsKernel and the block K0xN0 is transposed
*
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=1, -DK0=1).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=1)
* @note The number of output columns processed by the the cooperative mmul extension must be passed at compile time using -DMMUL_N0 (e.g., -DMMUL_N0=4)
* @note The number of output rows processed by the the cooperative mmul extension must be passed at compile time using -DMMUL_M0 (e.g., -DMMUL_M0=4)
* @note The number of lhs columns (or rhs rows) processed by the the cooperative mmul extension must be passed at compile time using -DMMUL_K0 (e.g., -DMMUL_K0=16)
* @note Only the following configurations of M0, N0 and K0 are currently supported:
* - M0 = 1, 2, 4
* - N0 = 1, 4, 8
* - K0 = 4
*
* @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
* The activation function is performed after the bias addition
*
* @param[in] lhs_ptr Pointer to the LHS tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
* @param[in] lhs_stride_y Stride of the LHS tensor in Y dimension (in bytes)
* @param[in] lhs_stride_z Stride of the LHS tensor in Z dimension (in bytes)
* @param[in] lhs_w The size of the width dimension of the LHS tensor
* @param[in] lhs_h The size of the height dimension of the LHS tensor
* @param[in] lhs_n The size of the depth dimension of the LHS tensor
* @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS tensor
* @param[in] rhs_ptr Pointer to the RHS reshaped tensor. Supported data type: same as @p lhs_ptr
* @param[in] rhs_stride_y Stride of the RHS tensor in Y dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS tensor in Z dimension (in bytes)
* @param[in] rhs_w The size of the width dimension of the RHS tensor
* @param[in] rhs_h The size of the height dimension of the RHS tensor
* @param[in] rhs_n The size of the depth dimension of the RHS tensor
* @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS tensor
* @param[in] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: S32
* @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes)
* @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes)
* @param[in] bia_w (Optional) The size of the width dimension of the bias tensor
* @param[in] bia_h (Optional) The size of the height dimension of the bias tensor
* @param[in] bia_n (Optional) The size of the depth dimension of the bias tensor
* @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data type: same as @p lhs_ptr or S32
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_w The size of the width dimension of the destination tensor
* @param[in] dst_h The size of the height dimension of the destination tensor
* @param[in] dst_n The size of the depth dimension of the destination tensor
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] M Number of rows in LHS matrix not reshaped
* @param[in] N Number of columns in RHS matrix not reshaped
* @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped
* @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: S32
* @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
* @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: S32
* @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
* @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
* @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
*/
__kernel void gemmlowp_mm_reshaped_only_rhs_mmul(
TENSOR3D_T(lhs, BUFFER),
TENSOR3D_T(rhs, BUFFER),
#if defined(ADD_BIAS)
TENSOR3D_T(bia, BUFFER),
#endif // defined(ADD_BIAS)
TENSOR3D_T(dst, BUFFER),
const int M,
const int N,
const int K
#if defined(A_OFFSET)
,
TENSOR3D_T(sum_col, BUFFER)
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
,
TENSOR3D_T(sum_row, BUFFER)
#endif // defined(B_OFFSET)
)
{
#define MMUL_BLOCK_SIZE (MMUL_N0 * MMUL_M0)
#define VEC_SIZE 4 // For int8 types input to mmul instruction is a length 4 vector
uint x0 = get_global_id(0);
uint y0 = get_global_id(1);
uint z = get_global_id(2);
// Get block ID and thread ID within the block
uint block_id = (x0 / MMUL_BLOCK_SIZE);
uint thread_id = (x0 % MMUL_BLOCK_SIZE);
// Coordinate within a block
uint block_x = thread_id % MMUL_N0;
uint block_y = (thread_id / MMUL_M0);
// Starting destination coordinates
uint dst_x = min(block_x * N0 + block_id * MMUL_N0 * N0, (uint)(N - 1));
uint dst_y = min(block_y * M0 + y0 * M0 * MMUL_M0, (uint)(M - M0));
uint lhs_x = VEC_SIZE * block_x;
uint lhs_y = dst_y;
uint rhs_x = VEC_SIZE * N0 * block_y;
uint rhs_y = 4 * block_id + block_x;
// Compute LHS/RHS/DST matrix address
lhs_offset_first_element_in_bytes += lhs_x * sizeof(DATA_TYPE) + lhs_y * lhs_stride_y + z * lhs_stride_z;
rhs_offset_first_element_in_bytes += rhs_x * sizeof(DATA_TYPE) + rhs_y * rhs_stride_y + z * rhs_stride_z;
dst_offset_first_element_in_bytes += dst_x * sizeof(OUT_DATA_TYPE) + dst_y * dst_stride_y + z * dst_stride_z;
TILE(ACC_DATA_TYPE, M0, N0, c);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
c[i].v = 0;
})
for(int k = 0; k <= K - MMUL_K0; k += MMUL_K0)
{
TILE(DATA_TYPE, M0, VEC_SIZE, a);
T_LOAD(DATA_TYPE, M0, VEC_SIZE, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
TILE(DATA_TYPE, N0, VEC_SIZE, b);
T_LOAD(DATA_TYPE, N0, VEC_SIZE, BUFFER, rhs, 0, 0, 1, VEC_SIZE, b);
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
LOOP_UNROLLING(int, n0, 0, 1, N0,
{
VEC_TYPE vec_a = (VEC_TYPE)(a[m0].s[0], a[m0].s[1], a[m0].s[2], a[m0].s[3]);
VEC_TYPE vec_b = (VEC_TYPE)(b[n0].s[0], b[n0].s[1], b[n0].s[2], b[n0].s[3]);
c[m0].s[n0] = arm_matrix_multiply(vec_a, vec_b, c[m0].s[n0]);
})
})
lhs_offset_first_element_in_bytes += MMUL_K0 * sizeof(DATA_TYPE);
rhs_offset_first_element_in_bytes += MMUL_K0 * N0 * sizeof(DATA_TYPE);
}
if(block_x * N0 + block_id * MMUL_N0 * N0 >= N)
{
return;
}
if(block_y * M0 + y0 * M0 * MMUL_M0 >= M)
{
return;
}
#if defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
TILE(int, M0, N0, offset_s32);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
offset_s32[i].v = (VEC_DATA_TYPE(int, N0))K_OFFSET;
})
#if defined(A_OFFSET)
TILE(int, 1, N0, a_offset_s32);
T_LOAD(int, 1, N0, BUFFER, sum_col, dst_x, z, 1, sum_col_stride_z, a_offset_s32);
a_offset_s32[0].v *= A_OFFSET;
T_ELTWISE_BROADCAST_ADD_X(int, M0, N0, offset_s32, a_offset_s32, offset_s32);
#endif // defined(A_OFFSET)
#if defined(B_OFFSET)
TILE(int, M0, 1, b_offset_s32);
T_LOAD(int, M0, 1, BUFFER, sum_row, dst_y, z * M, 1, 4, b_offset_s32);
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
offset_s32[m0].v += b_offset_s32[m0].v *B_OFFSET;
})
#endif // defined(B_OFFSET)
#if defined(ADD_BIAS)
#if defined(BROADCAST_BIAS)
bia_offset_first_element_in_bytes += dst_x * sizeof(ACC_DATA_TYPE) + z * bia_stride_y;
TILE(int, M0, N0, bias);
T_LOAD(int, M0, N0, BUFFER, bia, dst_x, dst_y, 1, 1, bias);
T_ADD(ACC_DATA_TYPE, M0, N0, offset_s32, bias, offset_s32);
#else // defined(BROADCAST_BIAS)
bia_offset_first_element_in_bytes += dst_x * sizeof(ACC_DATA_TYPE);
TILE(int, 1, N0, bias);
if(dst_x + N0 <= N || N0_LEFTOVER == 0)
{
bias[0].v = VLOAD(N0)(0, (ACC_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes));
}
else
{
VLOAD_PARTIAL(N0, N0_LEFTOVER)
(bias[0].v, 0, (ACC_DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes));
}
T_ELTWISE_BROADCAST_ADD_X(int, M0, N0, offset_s32, bias, offset_s32);
#endif // defined(BROADCAST_BIAS)
#endif // defined(ADD_BIAS)
T_ADD(ACC_DATA_TYPE, M0, N0, c, offset_s32, c);
TILE(OUT_DATA_TYPE, M0, N0, c_lp);
T_QUANTIZE8(ACC_DATA_TYPE, OUT_DATA_TYPE, PER_TENSOR, M0, N0, RESULT_OFFSET, RESULT_SHIFT, RESULT_MULTIPLIER, c, 0, 0, c_lp);
#if defined(MIN_BOUND)
LOOP_UNROLLING(int, i, 0, 1, M0,
{
c_lp[i].v = max(c_lp[i].v, (VEC_DATA_TYPE(OUT_DATA_TYPE, N0))MIN_BOUND);
})
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
LOOP_UNROLLING(int, i, 0, 1, M0,
{
c_lp[i].v = min(c_lp[i].v, (VEC_DATA_TYPE(OUT_DATA_TYPE, N0))MAX_BOUND);
})
#endif // defined(MAX_BOUND)
T_ACTIVATION(DATA_TYPE, M0, N0, ACTIVATION_TYPE, A_VAL, B_VAL, c, c);
if(dst_x + N0 <= N || N0_LEFTOVER == 0)
{
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
if(dst_y + m0 < M || M0_LEFTOVER == 0)
{
VSTORE(N0)
(c_lp[m0].v, 0, (__global OUT_DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + m0 * dst_stride_y));
}
})
}
else
{
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
if(dst_y + m0 < M || M0_LEFTOVER == 0)
{
VSTORE_PARTIAL(N0, N0_LEFTOVER)
(c_lp[m0].v, 0, (__global OUT_DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + m0 * dst_stride_y));
}
})
}
#else // FUSED_OUTPUT_STAGE_FIXED_POINT
// Store
if(dst_x + N0 <= N || N0_LEFTOVER == 0)
{
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
if(dst_y + m0 < M || M0_LEFTOVER == 0)
{
VSTORE(N0)
(c[m0].v, 0, (__global OUT_DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + m0 * dst_stride_y));
}
})
}
else
{
LOOP_UNROLLING(int, m0, 0, 1, M0,
{
if(dst_y + m0 < M || M0_LEFTOVER == 0)
{
VSTORE_PARTIAL(N0, N0_LEFTOVER)
(c[m0].v, 0, (__global OUT_DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + m0 * dst_stride_y));
}
})
}
#endif // FUSED_OUTPUT_STAGE_FIXED_POINT
}
#endif // defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_MMUL)