blob: cdd047cb28beefa01e97827095a528f211d34226 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
using namespace misc::shape_calculator;
namespace
{
using ElementsProcessed = Steps;
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!arm_matrix_multiply_supported(CLKernelLibrary::get().get_device()), "The extension cl_arm_matrix_multiply is not supported on the target platform");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
const GEMMRHSMatrixInfo rhs_info = gemm_info.rhs_info;
const GEMMLHSMatrixInfo lhs_info = gemm_info.lhs_info;
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.k0 != 4 || lhs_info.k0 != 4, "Only 4 is supported as value for k0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(lhs_info.m0 == 1 || lhs_info.m0 == 2 || lhs_info.m0 == 4), "Only 1,2,4 are supported for m0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(rhs_info.n0 == 1 || rhs_info.n0 == 4 || rhs_info.n0 == 8), "Only 1,4,8 are supported for n0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
const int m = gemm_info.m;
const int n = gemm_info.n;
const int k = gemm_info.k;
TensorShape tensor_shape1{ src1->tensor_shape() };
tensor_shape1.set(0, n);
tensor_shape1.set(1, k);
const TensorInfo tensor_info1 = src1->clone()->set_tensor_shape(tensor_shape1);
const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != static_cast<unsigned int>(k));
if(gemm_info.reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != static_cast<unsigned int>(m));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != static_cast<unsigned int>(m));
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
if(dst->total_size() != 0)
{
const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(expected_dst_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
if(output_stage.type == GEMMLowpOutputStageType::NONE)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
}
}
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != bias->dimension(0));
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN) || (output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT),
"Only GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT is supported");
// Checks performed if the dst stage needs to be fused
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
// If a_offset == 0, vector_sum_col can be a nullptr
if(gemm_info.a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != expected_dst_shape[0]);
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(gemm_info.b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if mm result is a 3D reinterpretation
const bool reinterpret_as_3d = expected_dst_shape.num_dimensions() > 1 && expected_dst_shape.y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (expected_dst_shape[1] * expected_dst_shape[2]));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != expected_dst_shape[1]);
if(expected_dst_shape.num_dimensions() > 1)
{
const unsigned int dst_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
TensorShape collapsed_dst_shape(expected_dst_shape);
collapsed_dst_shape.collapse_from(dst_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != collapsed_dst_shape[dst_batch_idx],
"vector_sum_row must have the same number of batches of dst tensor");
if(gemm_info.a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
}
if(dst->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != dst->data_type());
}
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
if(output_multipliers != nullptr && output_shifts != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
if(output_stage.is_quantized_per_channel)
{
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_shifts->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_multipliers->dimension(0));
}
}
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts, ElementsProcessed &num_elements_processed)
{
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d != 0);
Window win{};
bool window_changed = false;
constexpr unsigned int mmul_n0 = 4;
constexpr unsigned int mmul_m0 = 4;
constexpr unsigned int mmul_k0 = 16;
reinterpret_output_as_3d = false;
// dst tensor auto initialization if not yet initialized
const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
if(output_stage.type != GEMMLowpOutputStageType::NONE)
{
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(output_stage.output_data_type));
}
else
{
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(DataType::S32));
}
TensorInfo tmp_info(*dst);
if(reinterpret_output_as_3d)
{
// Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(dst->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Configure kernel window
num_elems_processed_per_iteration_x = 1;
num_elems_processed_per_iteration_y = 1;
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
if(gemm_info.a_offset != 0)
{
AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access);
}
// No access window needed for vector_sum_row
ARM_COMPUTE_UNUSED(vector_sum_row);
if(bias != nullptr)
{
AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win, bias_access);
}
if(output_multipliers != nullptr && output_stage.is_quantized_per_channel)
{
AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_processed_per_iteration_x);
AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win, output_multipliers_access, output_shifts_access);
}
}
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
Window collapsed = win.collapse(win, dimension_to_collapse);
// Reconfigure window size, one arm_matrix_multiply kernel needs 16 threads to finish.
Window::Dimension x_dimension = collapsed.x();
Window::Dimension y_dimension = collapsed.y();
// Make M and N multiple of M0 and N0 respectively
const unsigned int ceil_to_multiple_n_n0 = ceil_to_multiple(x_dimension.end(), gemm_info.rhs_info.n0);
const unsigned int ceil_to_multiple_m_m0 = ceil_to_multiple(y_dimension.end(), gemm_info.lhs_info.m0);
// Divide M and N by M0 and N0 respectively
const unsigned int n_div_n0 = ceil_to_multiple_n_n0 / gemm_info.rhs_info.n0;
const unsigned int m_div_m0 = ceil_to_multiple_m_m0 / gemm_info.lhs_info.m0;
// Make n_div_n0 and m_div_m0 multiple of mmul_n0 and mmul_k0 respectively
const unsigned int ceil_to_multiple_n_div_n0_mmul_n0 = ceil_to_multiple(n_div_n0, mmul_n0);
const unsigned int ceil_to_multiple_m_div_m0_mmul_m0 = ceil_to_multiple(m_div_m0, mmul_k0);
// Ensure x_dimension is multiple of MMUL block size (mmul_n0 * mmul_m0)
x_dimension.set_end(ceil_to_multiple_n_div_n0_mmul_n0 * mmul_n0);
y_dimension.set_end(ceil_to_multiple_m_div_m0_mmul_m0 / mmul_m0);
collapsed.set(Window::DimX, x_dimension);
collapsed.set(Window::DimY, y_dimension);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel()
{
_type = CLKernelType::GEMM;
}
void ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst,
const GEMMKernelInfo &gemm_info,
ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
auto padding_info = get_padding_info({ src0, src1, dst, vector_sum_row });
const GEMMRHSMatrixInfo rhs_info = gemm_info.rhs_info;
const GEMMLHSMatrixInfo lhs_info = gemm_info.lhs_info;
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
const int32_t a_offset = gemm_info.a_offset;
const int32_t b_offset = gemm_info.b_offset;
constexpr int mmul_m0 = 4;
constexpr int mmul_n0 = 4;
constexpr int mmul_k0 = 16;
_m = gemm_info.m;
_n = gemm_info.n;
_k = gemm_info.k;
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
const unsigned int m0_leftover = _m % lhs_info.m0;
const unsigned int n0_leftover = _n % rhs_info.n0;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
build_opts.add_option("-DVEC_TYPE=" + get_cl_type_from_data_type(src0->data_type()) + "4");
build_opts.add_option("-DACC_DATA_TYPE=int");
build_opts.add_option("-DOUT_DATA_TYPE=" + get_cl_type_from_data_type(dst->data_type()));
build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
build_opts.add_option("-DM0_LEFTOVER=" + support::cpp11::to_string(m0_leftover));
build_opts.add_option("-DN0_LEFTOVER=" + support::cpp11::to_string(n0_leftover));
build_opts.add_option("-DMMUL_M0=" + support::cpp11::to_string(mmul_m0));
build_opts.add_option("-DMMUL_N0=" + support::cpp11::to_string(mmul_n0));
build_opts.add_option("-DMMUL_K0=" + support::cpp11::to_string(mmul_k0));
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
std::string kernel_name("gemmlowp_mm_reshaped_only_rhs_mmul");
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
build_opts.add_option("-DFUSED_OUTPUT_STAGE_FIXED_POINT");
_fuse_output_stage = true;
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0 && vector_sum_col != nullptr)
{
build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
build_opts.add_option_if(vector_sum_col->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
}
// If b_offset == 0, vector_sum_row can be a nullptr
build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * src0->dimension(0)));
build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
build_opts.add_option_if(gemm_info.broadcast_bias == true, "-DBROADCAST_BIAS");
build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0]));
build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0]));
const int min = output_stage.gemmlowp_min_bound;
const int max = output_stage.gemmlowp_max_bound;
PixelValue min_val{};
PixelValue max_val{};
std::tie(min_val, max_val) = get_min_max(dst->data_type());
build_opts.add_option_if(min != min_val.get<int32_t>(), "-DMIN_BOUND=" + support::cpp11::to_string(min));
build_opts.add_option_if(max != max_val.get<int32_t>(), "-DMAX_BOUND=" + support::cpp11::to_string(max));
}
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (bias != nullptr ? "add_bias_" : "");
_config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : "");
_config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
_config_id += lower_string(string_from_data_type(src0->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(_m);
_config_id += "_";
_config_id += support::cpp11::to_string(_n);
_config_id += "_";
_config_id += support::cpp11::to_string(_k);
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
src1->clone().get(),
dst->clone().get(),
gemm_info,
vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
bias != nullptr ? bias->clone().get() : nullptr,
output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr,
output_shifts != nullptr ? output_shifts->clone().get() : nullptr,
num_elements_processed)
.first);
return Status{};
}
void ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
const auto src2 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
const auto vector_sum_col = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_COL_SUM));
const auto vector_sum_row = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_ROW_SUM));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
if(src1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
}
cl::Image2D src1_image2d;
Window slice = window.first_slice_window_3D();
do
{
unsigned int idx = 0;
add_3d_tensor_nhw_argument(idx, src0);
add_3d_tensor_nhw_argument(idx, src1);
// Bias buffer (_add_bias == true)
if(src2 != nullptr)
{
add_3d_tensor_nhw_argument(idx, src2);
}
// dst buffer
add_3d_tensor_nhw_argument(idx, dst);
// Pass m, n and k at runtime as signed ints, to ensure results of any subtraction they could be operand in, would still be signed.
_kernel.setArg<cl_int>(idx++, _m);
_kernel.setArg<cl_int>(idx++, _n);
_kernel.setArg<cl_int>(idx++, _k);
if(_fuse_output_stage)
{
if(vector_sum_col != nullptr)
{
add_3d_tensor_nhw_argument(idx, vector_sum_col);
}
if(vector_sum_row != nullptr)
{
add_3d_tensor_nhw_argument(idx, vector_sum_row);
}
}
enqueue(queue, *this, slice, cl::NDRange(32, 2), false);
}
while(window.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute