blob: 413fcf53334acf782d013ef515a53628f5c85a09 [file] [log] [blame]
/*
* Copyright (c) 2019-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "tile_helpers.h"
#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT)
#define VEC_TYPE_IN VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#define VEC_TYPE_OUT VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
#define VEC_SELECT_IN SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#define VEC_SIGNED_INT_IN SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#if defined(FLOAT_DATA_TYPE)
#define ISGREATER(x, y) (VEC_SELECT_IN) isgreater(x, y)
#define ISLESS(x, y) (VEC_SELECT_IN) isless(x, y)
#else // !FLOAT_DATA_TYPE
#if defined(WIDTH)
#define ISGREATER(x, y) (x > y) ? 1 : 0
#define ISLESS(x, y) (x < y) ? 1 : 0
#else // !defined(WIDTH)
#define ISGREATER(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x > y))
#define ISLESS(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x < y))
#endif // defined(WIDTH)
#endif // defined(FLOAT_DATA_TYPE)
#if defined(ARG_MAX)
#define CONDITION_TO_USE(x, y) ISGREATER(x, y)
#elif defined(ARG_MIN)
#define CONDITION_TO_USE(x, y) ISLESS(x, y)
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#error "Unsupported reduction operation!"
#endif // defined(ARG_MAX)
#if defined(WIDTH)
#if defined(ARG_MAX)
#define VECTOR_PREDICATE_EQ(x, y) ((x) >= (y))
#define VECTOR_PREDICATE(x, y) ((x) > (y))
#define SCALAR_SELECT_OP(x, y) ((x) > (y)) ? (x) : (y);
#elif defined(ARG_MIN)
#define VECTOR_PREDICATE_EQ(x, y) ((x) <= (y))
#define VECTOR_PREDICATE(x, y) ((x) < (y))
#define SCALAR_SELECT_OP(x, y) ((x) < (y)) ? (x) : (y);
#else // !(defined(ARG_MAX) || defined(ARG_MIN))
#error "Unsupported reduction operation!"
#endif // defined(ARG_MAX)
inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_2(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 2) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) res)
{
if( VECTOR_PREDICATE_EQ(in.s0,in.s1) )
{
*min_max_val = in.s0;
*min_max_idx = res.s0;
}
else
{
*min_max_val = in.s1;
*min_max_idx = res.s1;
}
}
inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_4(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 4) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) res)
{
VEC_DATA_TYPE(COND_DATA_TYPE, 2)
idx_sel = VECTOR_PREDICATE_EQ(in.s01, in.s23);
in.s01 = select(in.s23, in.s01, idx_sel);
res.s01 = select(res.s23, res.s01, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
*min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
*min_max_idx = res.s0;
}
inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_8(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 8) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 8) res)
{
VEC_DATA_TYPE(COND_DATA_TYPE, 4)
idx_sel = VECTOR_PREDICATE_EQ(in.s0123, in.s4567);
in.s0123 = select(in.s4567, in.s0123, idx_sel);
res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) ));
idx_sel.s01 = (VECTOR_PREDICATE(in.s01, in.s23)) || (in.s01 == in.s23 && CONVERT(((res.s01 < res.s23)), VEC_DATA_TYPE(COND_DATA_TYPE, 2)));
in.s01 = select(in.s23, in.s01, idx_sel.s01);
res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
*min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
*min_max_idx = res.s0;
}
inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_16(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 16) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 16) res)
{
VEC_DATA_TYPE(COND_DATA_TYPE, 8)
idx_sel = VECTOR_PREDICATE_EQ(in.s01234567, in.s89abcdef);
in.s01234567 = select(in.s89abcdef, in.s01234567, idx_sel);
res.s01234567 = select(res.s89abcdef, res.s01234567, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 8) ));
idx_sel.s0123 = VECTOR_PREDICATE(in.s0123, in.s4567) || (in.s0123 == in.s4567 && CONVERT(((res.s0123 < res.s4567)), VEC_DATA_TYPE(COND_DATA_TYPE, 4)));
in.s0123 = select(in.s4567, in.s0123, idx_sel.s0123);
res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel.s0123, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) ));
idx_sel.s01 = (VECTOR_PREDICATE(in.s01, in.s23)) || (in.s01 == in.s23 && CONVERT(((res.s01 < res.s23)), VEC_DATA_TYPE(COND_DATA_TYPE, 2)));
in.s01 = select(in.s23, in.s01, idx_sel.s01);
res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
*min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
*min_max_idx = res.s0;
}
inline void scalar_compute_global_min_max(DATA_TYPE in_val, int idx, DATA_TYPE *out_min_max_val, DATA_TYPE_OUTPUT *out_idx)
{
#if defined(ARG_MAX)
if(in_val > *out_min_max_val)
#else // defined(ARG_MAX)
if(in_val < *out_min_max_val)
#endif // defined(ARG_MAX)
{
*out_min_max_val = in_val;
*out_idx = idx;
}
}
#if VEC_SIZE > 1
#if VEC_SIZE == 16
#define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_16(min_max_val,min_max_idx,in,res)
#elif VEC_SIZE == 8 // #if VEC_SIZE == 16
#define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_8(min_max_val,min_max_idx,in,res)
#elif VEC_SIZE == 4 // # elif VEC_SIZE == 8
#define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_4(min_max_val,min_max_idx,in,res)
#elif VEC_SIZE == 2 // elif VEC_SIZE == 4
#define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_2(min_max_val,min_max_idx,in,res)
#else // elif VEC_SIZE == 2
#error "Not supported"
#endif // #if VEC_SIZE == 16
inline VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE) init_idx_vector()
{
#if VEC_SIZE == 16
VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
vidx = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
#elif VEC_SIZE == 8 // #if VEC_SIZE == 16
VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
vidx = { 0, 1, 2, 3, 4, 5, 6, 7 };
#elif VEC_SIZE == 4 // elif VEC_SIZE == 8
VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
vidx = { 0, 1, 2, 3 };
#elif VEC_SIZE == 2 // elif VEC_SIZE == 4
VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
vidx = { 0, 1 };
#else // elif VEC_SIZE == 2
#error "Not supported"
#endif // #if VEC_SIZE == 16
return vidx;
}
#endif // VEC_SIZE > 1
/** This kernel performs reduction on x-axis.
*
* @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint
* @note The data type used for the comparing indexe must be passed at compile type using -DCOND_DATA_TYPE: e.g -DCOND_DATA_TYPE=uint
* @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void arg_min_max_x(
IMAGE_DECLARATION(input),
IMAGE_DECLARATION(output))
{
__global DATA_TYPE *input_addr = (__global DATA_TYPE *)(input_ptr + input_offset_first_element_in_bytes + get_global_id(1) * input_stride_y);
__global DATA_TYPE_OUTPUT *output_addr = (__global DATA_TYPE_OUTPUT *)(output_ptr + output_offset_first_element_in_bytes + get_global_id(1) * output_stride_y);
DATA_TYPE final_value = input_addr[0];
DATA_TYPE_OUTPUT final_idx = 0;
#if VEC_SIZE > 1
VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
vidx = init_idx_vector();
int x = 0;
for(; x <= (WIDTH - VEC_SIZE); x += VEC_SIZE)
{
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
vals = VLOAD(VEC_SIZE)(0, (input_addr + x));
DATA_TYPE local_min_max_value;
DATA_TYPE_OUTPUT local_min_max_idx;
VECTORIZED_OP(&local_min_max_value, &local_min_max_idx, vals, vidx);
local_min_max_idx += x;
scalar_compute_global_min_max(local_min_max_value, local_min_max_idx, &final_value, &final_idx);
}
#endif // VEC_SIZE > 1
#if(WIDTH % VEC_SIZE)
LOOP_UNROLLING(int, j, 0, 1, WIDTH % VEC_SIZE,
{
scalar_compute_global_min_max(*(input_addr + j + x), j + x, &final_value, &final_idx);
})
#endif // (WIDTH % VEC_SIZE)
output_addr[0] = final_idx;
}
#endif // defined(WIDTH)
#if defined(HEIGHT)
/** This kernel performs reduction on y-axis.
*
* @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint
* @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void arg_min_max_y(
IMAGE_DECLARATION(input),
IMAGE_DECLARATION(output))
{
const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y;
VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
VEC_TYPE_OUT indx0 = 0;
for(DATA_TYPE_OUTPUT y = 1; y < HEIGHT; ++y)
{
VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + y * input_stride_y)), VEC_TYPE_IN);
VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
indx0 = select(indx0, (VEC_TYPE_OUT)y, cond_conv);
res = select(res, in, CONDITION_TO_USE(in, res));
}
// Store result
STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif // defined(HEIGHT)
#if defined(DEPTH) && !defined(BATCH)
/** This kernel performs reduction on z-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void arg_min_max_z(
TENSOR3D_DECLARATION(input),
TENSOR3D_DECLARATION(output))
{
const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z;
VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
VEC_TYPE_OUT indx0 = 0;
for(DATA_TYPE_OUTPUT z = 1; z < DEPTH; ++z)
{
VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + z * input_stride_z)), VEC_TYPE_IN);
VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
indx0 = select(indx0, (VEC_TYPE_OUT)z, cond_conv);
res = select(res, in, CONDITION_TO_USE(in, res));
}
// Store result
STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif /* defined(DEPTH) && !defined(BATCH) */
#if defined(BATCH) && defined(DEPTH)
/** This kernel performs reduction on w-axis.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
* @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128
* @note The depth size must be passed at compile time using -DBATCH e.g. -DDEPTH=128
*
* @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
* @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
* @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes)
* @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
*/
__kernel void arg_min_max_w(
TENSOR4D_DECLARATION(input),
TENSOR4D_DECLARATION(output))
{
const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
__global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + (get_global_id(2) % DEPTH) * input_stride_z +
(get_global_id(2) / DEPTH) * input_stride_w;
__global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + (get_global_id(
2) % DEPTH) * output_stride_z + (get_global_id(2) / DEPTH) * output_stride_w;
VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
VEC_TYPE_OUT indx0 = 0;
for(DATA_TYPE_OUTPUT w = 1; w < BATCH; ++w)
{
VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + w * input_stride_w)), VEC_TYPE_IN);
VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
indx0 = select(indx0, (VEC_TYPE_OUT)w, cond_conv);
res = select(res, in, CONDITION_TO_USE(in, res));
}
// Store result
STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
}
#endif /* defined(BATCH) && defined(DEPTH) */
#endif // defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT)