blob: bd550db54c3d16cb09e745c0a5244f55562c64cd [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
NEGEMMLowpOffsetContributionKernel::NEGEMMLowpOffsetContributionKernel()
: _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true)
{
}
void NEGEMMLowpOffsetContributionKernel::configure(ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_ERROR_ON(vector_sum_col->info()->dimension(0) != mm_result->info()->dimension(0));
TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
vector_sum_col_shape.collapse(1);
// Check if vector_sum_col_shape should be slidden or not
// Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
_slide_vector_sum_col = vector_sum_col_shape[1] != 1;
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(b_offset != 0)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
ARM_COMPUTE_ERROR_ON(vector_sum_row->info()->dimension(0) != mm_result->info()->dimension(1));
TensorShape output_shape = mm_result->info()->tensor_shape();
TensorShape vector_sum_row_shape = vector_sum_row->info()->tensor_shape();
vector_sum_row_shape.collapse(1);
output_shape.collapse(2);
ARM_COMPUTE_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor");
if(a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
vector_sum_col_shape.collapse(1);
ARM_COMPUTE_ERROR_ON_MSG(vector_sum_col_shape[1] != 1
&& vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
_vector_sum_col = vector_sum_col;
_vector_sum_row = vector_sum_row;
_mm_result = mm_result;
_a_offset = a_offset;
_b_offset = b_offset;
_k_offset = a_offset * b_offset * k;
constexpr unsigned int num_elems_processed_per_iteration = 16;
// Configure kernel window
Window win = calculate_max_window(*mm_result->info(), Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal mm_result_access(mm_result->info(), 0, num_elems_processed_per_iteration);
// Accordingly with a_offset and b_offset, we can have 4 cases:
// a_offset != 0 && b_offset != 0
// a_offset = 0 && b_offset != 0
// a_offset != 0 && b_offset = 0
// a_offset = 0 && b_offset = 0
if(a_offset != 0 && b_offset != 0)
{
AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
vector_sum_col_access,
vector_sum_row_access,
mm_result_access);
}
else if(a_offset == 0 && b_offset != 0)
{
AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
update_window_and_padding(win,
vector_sum_row_access,
mm_result_access);
}
else if(a_offset != 0 && b_offset == 0)
{
AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
vector_sum_col_access,
mm_result_access);
}
else
{
update_window_and_padding(win,
mm_result_access);
}
INEKernel::configure(win);
}
void NEGEMMLowpOffsetContributionKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimZ);
if(_a_offset != 0 && _b_offset != 0) // true, true
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
if(!_slide_vector_sum_col)
{
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
}
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
Iterator mm_result(_mm_result, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
// Compute the leftover term due to b_offset.
int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
// Add a_offset_term_s32 and b_offset_term_s32
int32x4x4_t offset_term_s32 =
{
{
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset),
vdupq_n_s32(_k_offset)
}
};
offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32));
offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32));
offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32));
offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32));
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
// Store the result with the offset contribution
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
},
vector_sum_col, vector_sum_row, mm_result);
}
else if((_a_offset == 0) && (_b_offset != 0)) // false, true
{
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
Iterator mm_result(_mm_result, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to b_offset.
int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32);
in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32);
in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32);
in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32);
// Store the result with the offset contribution
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
},
vector_sum_row, mm_result);
}
else if((_a_offset != 0) && (_b_offset == 0)) // true, false
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
if(!_slide_vector_sum_col)
{
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
}
Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
Iterator mm_result(_mm_result, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);
// Store the result with the offset contribution
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
},
vector_sum_col, mm_result);
}
else // false, false
{
// No offset contribution from matrix A and matrix B
return;
}
}