blob: 81d9b5bb81a619d6212a129ba9c84e9fa7f4666a [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
INEGEMMLowpReductionKernel::INEGEMMLowpReductionKernel()
: _input(), _output(), _k(0), _is_reshaped(false)
{
}
void NEGEMMLowpMatrixAReductionKernel::configure(const ITensor *mtx_a, ITensor *vector_sum_row, int32_t num_mtx_a_cols, bool is_interleaved4x4)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mtx_a, 1, DataType::QASYMM8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
_input = mtx_a;
_output = vector_sum_row;
_k = num_mtx_a_cols;
_is_reshaped = is_interleaved4x4;
const unsigned int num_elems_processed_per_iteration = _is_reshaped ? 4 : 1;
// Configure kernel window
Window win = calculate_max_window(*_output->info(), Steps(num_elems_processed_per_iteration));
AccessWindowStatic input_access(_input->info(), 0, 0, ceil_to_multiple(_input->info()->dimension(0), 16), _input->info()->dimension(1));
AccessWindowHorizontal output_access(_output->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
input_access,
output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), _output->info()->tensor_shape()));
INEKernel::configure(win);
}
void NEGEMMLowpMatrixAReductionKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
Window win_input(collapsed_window);
win_input.set(Window::DimX, Window::Dimension(0, 0, 0));
win_input.set(Window::DimY, Window::Dimension(0, 0, 0));
win_input.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator in(_input, win_input);
Iterator out(_output, collapsed_window);
if(_is_reshaped)
{
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
// Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
uint32x4_t sum_row = vdupq_n_u32(0);
const uint8_t *matrix_a = (in.ptr() + (id.x() / 4) * _input->info()->strides_in_bytes()[1] + id.y() * _input->info()->strides_in_bytes()[2]);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_a));
#endif /* __arm__ */
int i = 0;
// This for loop performs 4 accumulations
for(; i <= (_k - 4); i += 4)
{
const uint8x16_t a0_u8 = vld1q_u8(matrix_a + i * 4);
// Convert U8 to U16
uint16x4x4_t a0_u16 =
{
{
vget_low_u16(vmovl_u8(vget_low_u8(a0_u8))),
vget_high_u16(vmovl_u8(vget_low_u8(a0_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(a0_u8))),
vget_high_u16(vmovl_u8(vget_high_u8(a0_u8)))
}
};
// Accumulate to U16
a0_u16.val[0] = vadd_u16(a0_u16.val[0], a0_u16.val[1]);
a0_u16.val[0] = vadd_u16(a0_u16.val[0], a0_u16.val[2]);
a0_u16.val[0] = vadd_u16(a0_u16.val[0], a0_u16.val[3]);
// Accumulate to U32
sum_row = vaddw_u16(sum_row, a0_u16.val[0]);
}
// This for loop performs the leftover accumulations
for(; i < _k; ++i)
{
const uint8x8_t a0_u8 = vld1_u8(matrix_a + i * 4);
// Convert U8 to U16
const uint16x4_t a0_u16 = vget_low_u16(vmovl_u8(a0_u8));
// Accumulate to U32
sum_row = vaddw_u16(sum_row, a0_u16);
}
auto vector_sum_row = reinterpret_cast<int32_t *>(out.ptr());
vst1q_s32(vector_sum_row, vreinterpretq_s32_u32(sum_row));
},
in, out);
}
else // it is not reshaped
{
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
// Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
uint32x4_t sum_row_u32 = vdupq_n_u32(0);
uint32_t sum_row = 0;
const uint8_t *matrix_a = (in.ptr() + id.x() * _input->info()->strides_in_bytes()[1] + +id.y() * _input->info()->strides_in_bytes()[2]);
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_a));
#endif /* __arm__ */
int i = 0;
// This for loop performs 16 accumulations
for(; i <= (_k - 16); i += 16)
{
const uint8x16_t a0_u8 = vld1q_u8(matrix_a + i);
// Partial accumulations in U16
const uint16x8_t tmp_sum0 = vaddl_u8(vget_low_u8(a0_u8), vget_high_u8(a0_u8));
// Accumulate to U32
sum_row_u32 = vaddq_u32(sum_row_u32, vpaddlq_u16(tmp_sum0));
}
// This for loop performs the leftover accumulations
for(; i < _k; ++i)
{
sum_row += static_cast<uint32_t>(matrix_a[i]);
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
sum_row += vaddvq_u32(sum_row_u32);
#else // __aarch64__
uint32x2_t tmp = vpadd_u32(vget_high_u32(sum_row_u32), vget_low_u32(sum_row_u32));
tmp = vpadd_u32(tmp, tmp);
sum_row += vget_lane_u32(tmp, 0);
#endif // __aarch64__
*(reinterpret_cast<int *>(out.ptr())) = static_cast<int>(sum_row);
},
in, out);
}
}
void NEGEMMLowpMatrixBReductionKernel::configure(const ITensor *mtx_b, ITensor *vector_sum_col, int32_t num_mtx_b_rows, bool is_transposed1xW)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mtx_b, 1, DataType::QASYMM8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
_input = mtx_b;
_output = vector_sum_col;
_k = num_mtx_b_rows;
_is_reshaped = is_transposed1xW;
constexpr unsigned int num_elems_processed_per_iteration = 16;
// Configure kernel window
Window win = calculate_max_window(*vector_sum_col->info(), Steps(num_elems_processed_per_iteration));
AccessWindowStatic input_access(_input->info(), 0, 0, ceil_to_multiple(_input->info()->dimension(0), 16), _input->info()->dimension(1));
AccessWindowHorizontal output_access(_output->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
input_access,
output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), _output->info()->tensor_shape()));
INEKernel::configure(win);
}
void NEGEMMLowpMatrixBReductionKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimY);
if(_is_reshaped)
{
Window win_input(collapsed_window);
win_input.set(Window::DimX, Window::Dimension(0, 0, 0));
win_input.set(Window::DimY, Window::Dimension(0, 0, 0));
win_input.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator in(_input, win_input);
Iterator out(_output, collapsed_window);
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
// Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
uint32x4x4_t sum_col =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
const uint8_t *matrix_b = in.ptr() + (id.x() / 16) * _input->info()->strides_in_bytes()[1] + id.y() * _input->info()->strides_in_bytes()[2];
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b));
#endif /* __arm__ */
int i = 0;
for(; i < _k; ++i)
{
const uint8x16_t b0_u8 = vld1q_u8(matrix_b + i * 16);
// Convert S8 to U16
const uint16x8x2_t b0_u16 =
{
{
vmovl_u8(vget_low_u8(b0_u8)),
vmovl_u8(vget_high_u8(b0_u8))
}
};
// Accumulate to U32
sum_col =
{
{
vaddw_u16(sum_col.val[0], vget_low_u16(b0_u16.val[0])),
vaddw_u16(sum_col.val[1], vget_high_u16(b0_u16.val[0])),
vaddw_u16(sum_col.val[2], vget_low_u16(b0_u16.val[1])),
vaddw_u16(sum_col.val[3], vget_high_u16(b0_u16.val[1]))
}
};
}
auto vector_sum_col = reinterpret_cast<int32_t *>(out.ptr());
vst1q_s32(vector_sum_col + 0, vreinterpretq_s32_u32(sum_col.val[0]));
vst1q_s32(vector_sum_col + 4, vreinterpretq_s32_u32(sum_col.val[1]));
vst1q_s32(vector_sum_col + 8, vreinterpretq_s32_u32(sum_col.val[2]));
vst1q_s32(vector_sum_col + 12, vreinterpretq_s32_u32(sum_col.val[3]));
},
in, out);
}
else // it is not reshaped
{
const auto width_matrix_b = static_cast<int>(_input->info()->dimension(0));
const auto in_b_stride = static_cast<int>(_input->info()->strides_in_bytes()[1]);
// The implementation computes 16 elements per iteration
const int window_start_x = 16 * info.thread_id;
const int window_step_x = 16 * info.num_threads;
// Make sure (window_end_x - window_start_x) is a multiple of window_step_x
const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
Window win_out(collapsed_window);
win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
Window win_in(win_out);
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator inb(_input, win_in);
Iterator out(_output, win_out);
execute_window_loop(win_out, [&](const Coordinates & id)
{
if(id.x() > width_matrix_b)
{
return;
}
// Note: Since the input is unsigned char, we can safely use unsigned int for the accumulation
uint32x4x4_t sum_col =
{
{
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0),
vdupq_n_u32(0)
}
};
const uint8_t *matrix_b = inb.ptr() + id.y() * _input->info()->strides_in_bytes()[2];
#if __arm__
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b));
asm volatile("PLD [%0, #128*4]" ::"r"(matrix_b + in_b_stride));
#endif /* __arm__ */
int i = 0;
// This for loop performs 4 accumulations
for(; i <= (_k - 4); i += 4)
{
const uint8x16_t b0_u8 = vld1q_u8(matrix_b + 0 * in_b_stride);
const uint8x16_t b1_u8 = vld1q_u8(matrix_b + 1 * in_b_stride);
const uint8x16_t b2_u8 = vld1q_u8(matrix_b + 2 * in_b_stride);
const uint8x16_t b3_u8 = vld1q_u8(matrix_b + 3 * in_b_stride);
#if __arm__
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 1 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 2 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 3 * in_b_stride));
asm volatile("PLD [%0, #128*1]" ::"r"(matrix_b + 4 * in_b_stride));
#endif /* __arm__ */
// Partial accumulation in u16
uint16x8x2_t tmp_sum =
{
{
vdupq_n_u16(0),
vdupq_n_u16(0)
}
};
tmp_sum.val[0] = vaddw_u8(tmp_sum.val[0], vget_low_u8(b0_u8));
tmp_sum.val[0] = vaddw_u8(tmp_sum.val[0], vget_low_u8(b1_u8));
tmp_sum.val[0] = vaddw_u8(tmp_sum.val[0], vget_low_u8(b2_u8));
tmp_sum.val[0] = vaddw_u8(tmp_sum.val[0], vget_low_u8(b3_u8));
tmp_sum.val[1] = vaddw_u8(tmp_sum.val[1], vget_high_u8(b0_u8));
tmp_sum.val[1] = vaddw_u8(tmp_sum.val[1], vget_high_u8(b1_u8));
tmp_sum.val[1] = vaddw_u8(tmp_sum.val[1], vget_high_u8(b2_u8));
tmp_sum.val[1] = vaddw_u8(tmp_sum.val[1], vget_high_u8(b3_u8));
// Accumulate to U32
sum_col =
{
{
vaddw_u16(sum_col.val[0], vget_low_u16(tmp_sum.val[0])),
vaddw_u16(sum_col.val[1], vget_high_u16(tmp_sum.val[0])),
vaddw_u16(sum_col.val[2], vget_low_u16(tmp_sum.val[1])),
vaddw_u16(sum_col.val[3], vget_high_u16(tmp_sum.val[1]))
}
};
matrix_b += 4 * in_b_stride;
}
// This for loop perfoms the leftover accumulations
for(; i < _k; ++i)
{
const uint8x16_t b0_u8 = vld1q_u8(matrix_b + 0 * in_b_stride);
// Convert S8 to S16
const uint16x8x2_t b0_u16 =
{
{
vmovl_u8(vget_low_u8(b0_u8)),
vmovl_u8(vget_high_u8(b0_u8))
}
};
// Accumulate to U32
sum_col =
{
{
vaddw_u16(sum_col.val[0], vget_low_u16(b0_u16.val[0])),
vaddw_u16(sum_col.val[1], vget_high_u16(b0_u16.val[0])),
vaddw_u16(sum_col.val[2], vget_low_u16(b0_u16.val[1])),
vaddw_u16(sum_col.val[3], vget_high_u16(b0_u16.val[1]))
}
};
matrix_b += in_b_stride;
}
auto vector_sum_col = reinterpret_cast<int32_t *>(out.ptr());
vst1q_s32(vector_sum_col + 0, vreinterpretq_s32_u32(sum_col.val[0]));
vst1q_s32(vector_sum_col + 4, vreinterpretq_s32_u32(sum_col.val[1]));
vst1q_s32(vector_sum_col + 8, vreinterpretq_s32_u32(sum_col.val[2]));
vst1q_s32(vector_sum_col + 12, vreinterpretq_s32_u32(sum_col.val[3]));
},
inb, out);
}
}