blob: cbf3923243113c5aca8dbc228d3eb7341cd316ad [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLReductionOperationKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
namespace
{
// OpenCL kernel requires input width to be a power of 2 for x-axis.
constexpr unsigned int border_val = 64;
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op, unsigned int width)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
if(input->num_channels() == 1)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::S32, DataType::F16, DataType::F32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(op == ReductionOperation::SUM_SQUARE && input->data_type() == DataType::QASYMM8, "Not supported reduction operation for QASYMM8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= TensorShape::num_max_dimensions, "Reduction axis greater than max number of dimensions");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
ARM_COMPUTE_RETURN_ERROR_ON(op == ReductionOperation::MEAN_SUM && axis == 0 && width == 0 && input->data_type() != DataType::QASYMM8);
if(output->total_size() != 0)
{
if(op == ReductionOperation::ARG_IDX_MAX || op == ReductionOperation::ARG_IDX_MIN)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QASYMM8, "Not supported operation for QASYMM8");
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U32, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
}
return Status{};
}
std::tuple<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, unsigned int axis, ReductionOperation op)
{
// Output tensor auto initialization if not yet initialized
const bool is_arg_min_max = (op == ReductionOperation::ARG_IDX_MIN || op == ReductionOperation::ARG_IDX_MAX);
const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, !is_arg_min_max);
const DataType output_data_type = is_arg_min_max ? DataType::S32 : input->data_type();
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true));
const unsigned int num_elems_processed_per_iteration = (is_data_type_quantized(input->data_type()) && (axis == 0)) ? 1 : 16;
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
bool window_changed = false;
const bool is_serial_op = needs_serialized_reduction(op, input->data_type(), axis);
switch(axis)
{
case 0:
{
if(is_serial_op)
{
AccessWindowHorizontal input_access(input, 0, input->dimension(0));
AccessWindowHorizontal output_access(output, 0, 1);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
else
{
const unsigned int border_width = ((input->dimension(0) % border_val) != 0) ? border_val - input->dimension(0) % border_val : 0;
AccessWindowStatic input_access(input, 0, 0, input->dimension(0) + border_width, 1);
AccessWindowHorizontal output_access(output, 0, 1);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
}
break;
case 1:
case 2:
case 3:
{
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_tuple(err, win);
}
} // namespace
CLReductionOperationKernel::CLReductionOperationKernel()
: _input(nullptr), _output(nullptr), _reduction_axis(0), _op(ReductionOperation::SUM_SQUARE), _border_size()
{
}
BorderSize CLReductionOperationKernel::border_size() const
{
return _border_size;
}
void CLReductionOperationKernel::configure(const ICLTensor *input, ICLTensor *output, unsigned int axis, ReductionOperation op, unsigned int width)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), axis, op, width));
_input = input;
_output = output;
_reduction_axis = axis;
_op = op;
// Set build options
CLBuildOptions build_opts;
std::string data_type_promoted = get_cl_type_from_data_type(input->info()->data_type());
if(is_data_type_quantized(input->info()->data_type()))
{
data_type_promoted = "uint";
}
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_option("-DDATA_TYPE_PROMOTED=" + data_type_promoted);
build_opts.add_option_if(is_data_type_float(input->info()->data_type()), "-DFLOAT_DATA_TYPE");
build_opts.add_option_if(op == ReductionOperation::SUM_SQUARE, "-DSUM_SQUARE");
build_opts.add_option_if(op == ReductionOperation::MEAN_SUM, "-DMEAN");
build_opts.add_option_if(op == ReductionOperation::ARG_IDX_MAX, "-DARG_MAX");
build_opts.add_option_if(op == ReductionOperation::ARG_IDX_MIN, "-DARG_MIN");
build_opts.add_option_if(op == ReductionOperation::PROD, "-DPROD");
build_opts.add_option_if(op == ReductionOperation::MIN, "-DMIN");
build_opts.add_option_if(op == ReductionOperation::MAX, "-DMAX");
build_opts.add_option_if(input->info()->num_channels() == 2, "-DCOMPLEX");
switch(op)
{
case ReductionOperation::SUM_SQUARE:
build_opts.add_option(("-DOPERATION=square_sum"));
break;
case ReductionOperation::SUM:
case ReductionOperation::MEAN_SUM:
build_opts.add_option(("-DOPERATION=sum"));
break;
case ReductionOperation::ARG_IDX_MAX:
case ReductionOperation::ARG_IDX_MIN:
case ReductionOperation::MIN:
case ReductionOperation::MAX:
break;
case ReductionOperation::PROD:
build_opts.add_option(("-DOPERATION=product"));
break;
default:
ARM_COMPUTE_ERROR("Unsupported reduction operation");
}
// Create kernel
cl::NDRange lws_hint = CLKernelLibrary::get().default_ndrange();
std::string kernel_axis_name;
const bool is_serial_op = needs_serialized_reduction(_op, _input->info()->data_type(), _reduction_axis);
switch(axis)
{
case 0:
{
if(is_serial_op)
{
build_opts.add_option("-DWIDTH=" + support::cpp11::to_string(input->info()->dimension(0)));
build_opts.add_option_if_else(_input->info()->data_type() == DataType::F16, "-DCOND_DATA_TYPE=short", "-DCOND_DATA_TYPE=int");
kernel_axis_name = "non_parallel_x";
}
else
{
build_opts.add_option_if(op == ReductionOperation::MEAN_SUM, "-DWIDTH=" + support::cpp11::to_string(width));
const unsigned int width_leftover = input->info()->dimension(0) % border_val;
const unsigned int border_width = (width_leftover != 0) ? border_val - width_leftover : 0;
const unsigned int num_of_threads = ((input->info()->dimension(0) + border_width) / 16);
kernel_axis_name = "x";
// Set the number of WG based on the input size. If input width is < 128
// we can use fewer threads than 8.
lws_hint = cl::NDRange(std::min(8U, num_of_threads));
_border_size = BorderSize(0, border_width, 0, 0);
}
}
break;
case 1:
build_opts.add_option("-DHEIGHT=" + support::cpp11::to_string(input->info()->dimension(1)));
kernel_axis_name = "y";
break;
case 2:
build_opts.add_option("-DDEPTH=" + support::cpp11::to_string(input->info()->dimension(2)));
kernel_axis_name = "z";
break;
case 3:
build_opts.add_option("-DDEPTH=" + support::cpp11::to_string(input->info()->dimension(2)));
build_opts.add_option("-DBATCH=" + support::cpp11::to_string(input->info()->dimension(3)));
kernel_axis_name = "w";
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("reduction_operation_" + kernel_axis_name, build_opts.options()));
// Configure kernel window
auto win_config = validate_and_configure_window(_input->info(), _output->info(), axis, op);
ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
ICLKernel::configure_internal(std::get<1>(win_config), lws_hint);
}
Status CLReductionOperationKernel::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op, unsigned int width)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, axis, op, width));
ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), axis, op)));
return Status{};
}
void CLReductionOperationKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
const bool is_serial_op = needs_serialized_reduction(_op, _input->info()->data_type(), _reduction_axis);
switch(_reduction_axis)
{
case 0:
{
// We use parallel reduction only in non quantized types
if(is_serial_op)
{
// Get first input and output slices
Window window_in{ window };
window_in.set(Window::DimX, Window::Dimension(0, _input->info()->dimension(0), _input->info()->dimension(0)));
Window in_slice = window.first_slice_window_1D();
Window out_slice = window.first_slice_window_1D();
do
{
unsigned int idx = 0;
add_1D_tensor_argument(idx, _input, in_slice);
add_1D_tensor_argument(idx, _output, out_slice);
enqueue(queue, *this, in_slice, lws_hint());
}
while(window_in.slide_window_slice_1D(in_slice) && window.slide_window_slice_1D(out_slice));
}
else
{
// Set out window
Window out_window(window);
out_window.set(Window::DimX, Window::Dimension(0, 0, 0));
// Get first input and output slices
Window in_slice = window.first_slice_window_2D();
Window out_slice = out_window.first_slice_window_2D();
// Reshape window
const unsigned int border_width = ((in_slice.x().end() % border_val) != 0) ? border_val - in_slice.x().end() % border_val : 0;
in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start(), in_slice.x().end() + border_width, in_slice.x().step()));
// Set local sums buffer
unsigned int local_res_size = lws_hint()[0] * _input->info()->element_size();
_kernel.setArg(num_arguments_per_2D_tensor() * 2, local_res_size, nullptr);
do
{
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input, in_slice);
add_2D_tensor_argument(idx, _output, out_slice);
enqueue(queue, *this, in_slice, lws_hint());
}
while(window.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(out_slice));
}
}
break;
case 1:
{
// Get first input and output slices
Window window_in{ window };
window_in.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), _input->info()->dimension(1)));
Window in_slice = window_in.first_slice_window_2D();
Window out_slice = window.first_slice_window_2D();
do
{
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input, in_slice);
add_2D_tensor_argument(idx, _output, out_slice);
enqueue(queue, *this, in_slice, lws_hint());
}
while(window_in.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(out_slice));
}
break;
case 2:
{
// Get first input and output slices
Window window_in{ window };
window_in.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), _input->info()->dimension(2)));
Window in_slice = window_in.first_slice_window_3D();
Window out_slice = window.first_slice_window_3D();
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, in_slice);
add_3D_tensor_argument(idx, _output, out_slice);
enqueue(queue, *this, in_slice, lws_hint());
}
while(window_in.slide_window_slice_3D(in_slice) && window.slide_window_slice_3D(out_slice));
}
break;
case 3:
{
// Get first input and output slices
Window window_in{ window };
window_in.set(3, Window::Dimension(0, 1, 1));
Window in_slice = window_in.first_slice_window_4D();
Window out_slice = window.first_slice_window_4D();
do
{
unsigned int idx = 0;
add_4D_tensor_argument(idx, _input, in_slice);
add_4D_tensor_argument(idx, _output, out_slice);
enqueue(queue, *this, in_slice, lws_hint());
}
while(window_in.slide_window_slice_4D(in_slice) && window.slide_window_slice_4D(out_slice));
}
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
}
} // namespace arm_compute