blob: e91038f9a22ea72726fa7fe12bb5e886186de6c8 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMM.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/GPUTarget.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "arm_compute/runtime/CL/gemm_reshaped/CLGEMMReshapedConfiguration.h"
#include "arm_compute/runtime/ITensorAllocator.h"
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::cl_gemm;
namespace
{
inline bool is_interleaved_transposed(unsigned int m, unsigned int n, unsigned int k, DataType data_type, bool reshape_b_only_on_first_run, GPUTarget gpu_target)
{
bool flag = true;
if(gpu_target_is_in(gpu_target, GPUTarget::G52, GPUTarget::G52LIT, GPUTarget::G71, GPUTarget::G72, GPUTarget::G76))
{
if((m > 1) && n < 16)
{
flag = true;
}
else
{
// COMPMID-852
if(k > 256 && m > 4 && is_data_type_float(data_type) && reshape_b_only_on_first_run)
{
constexpr float alpha = 3.2f;
constexpr float fact0 = 1.51f;
constexpr float fact1 = 1.66f;
constexpr float ops = 12.0f;
const float scale = k > 1024 ? 1.07f : 1.0f;
flag = alpha + ((n * fact0) / ops) < ((fact1 * n * scale) / ops);
}
else
{
flag = false;
}
}
}
else
{
// We reshape the matrices only if we do not have the vector-by-matrix case and we reshape the matrix B only once
flag = m != 1 && reshape_b_only_on_first_run;
}
return flag;
}
} // namespace
CLGEMM::CLGEMM(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
_mm_kernel(),
_ma_kernel(),
_reshape_lhs_kernel(),
_reshape_rhs_kernel(),
_mm_reshaped_kernel(),
_tmp_a(),
_tmp_b(),
_original_b(nullptr),
_is_interleaved_transposed(false),
_run_addition(false),
_reshape_b_only_on_first_run(false),
_is_prepared(false),
_is_new_gemm_reshaped(false)
{
}
void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), alpha, beta, gemm_info));
// Check if we need to reshape the matrix B only on the first run
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_is_prepared = gemm_info.retain_internal_weights();
_original_b = b;
const ICLTensor *matrix_a = a;
const ICLTensor *matrix_b = b;
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
// Set the target for the kernels
_reshape_lhs_kernel.set_target(gpu_target);
_mm_kernel.set_target(gpu_target);
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
DataType data_type = a->info()->data_type();
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->info()->dimension(1) * a->info()->dimension(2)) : a->info()->dimension(1);
const unsigned int n = b->info()->dimension(0);
const unsigned int k = a->info()->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->info()->dimension(3) : a->info()->dimension(2);
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
int mult_transpose1xW_width = 1;
int mult_interleave4x4_height = 1;
if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST)
{
mult_transpose1xW_width = 4;
mult_interleave4x4_height = 2;
}
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = 16 / b->info()->element_size();
rhs_info.k0 = 1;
rhs_info.h0 = mult_transpose1xW_width;
rhs_info.interleave = false;
rhs_info.transpose = false;
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = 4;
lhs_info.k0 = 4;
lhs_info.v0 = mult_interleave4x4_height;
lhs_info.interleave = true;
lhs_info.transpose = true;
// Check if we need to reshape the matrix A and matrix B
_is_interleaved_transposed = is_interleaved_transposed(m, n, k, a->info()->data_type(), _reshape_b_only_on_first_run, gpu_target);
// Check if we can run the new reshaped GEMM
const auto workload = static_cast<float>((m * n) / 20.0f);
_is_new_gemm_reshaped = (workload > 1600.0f) && (get_arch_from_target(gpu_target) == GPUTarget::BIFROST) && _is_interleaved_transposed && (data_type == DataType::F32);
const bool add_matrix_c = (beta != 0.f && c != nullptr);
const bool is_beta_one = std::abs(1.0f - beta) < 0.00001f;
const bool use_fused_add = is_beta_one && (c != nullptr && c->info()->num_dimensions() == 1) && !_is_new_gemm_reshaped;
// if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
if(_is_interleaved_transposed)
{
reinterpret_input_as_3d = false;
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
// Manage intermediate buffers
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
// _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
if(_is_new_gemm_reshaped)
{
GEMMLHSMatrixInfo lhs_info;
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedConfigurationFactory::create()->configure(m, n, k, batch_size, data_type);
_reshape_lhs_kernel.configure(a, &_tmp_a, lhs_info, gemm_info.reinterpret_input_as_3d());
_reshape_rhs_kernel.configure(b, &_tmp_b, rhs_info);
// Configure and tune matrix multiply kernel
_mm_reshaped_kernel.configure(matrix_a, matrix_b, output, alpha, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1,
depth_output_gemm3d, reinterpret_input_as_3d));
}
else
{
// Configure interleave kernel
_reshape_lhs_kernel.configure(a, &_tmp_a, lhs_info, gemm_info.reinterpret_input_as_3d());
// Configure transpose kernel
_reshape_rhs_kernel.configure(b, &_tmp_b, rhs_info);
}
}
if(!_is_new_gemm_reshaped)
{
// Configure and tune matrix multiply kernel
_mm_kernel.configure(matrix_a, matrix_b, (add_matrix_c && !use_fused_add) ? nullptr : c, output, alpha, beta, _is_interleaved_transposed,
GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d, reinterpret_input_as_3d),
gemm_info.fp_mixed_precision());
CLScheduler::get().tune_kernel_static(_mm_kernel);
}
if(_is_interleaved_transposed)
{
// Allocate intermediate tensors
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
// Configure matrix addition kernel
if(add_matrix_c && !use_fused_add)
{
_ma_kernel.configure(c, output, beta);
_run_addition = true;
}
}
Status CLGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_UNUSED(output);
// Check if we need to reshape the matrix B only on the first run
const bool reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
// Get the GPU target
const GPUTarget gpu_target = CLScheduler::get().target();
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to CLGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to CLGEMMReshapeInfo
// in order to know how the matrices have been reshaped
DataType data_type = a->data_type();
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
const unsigned int m = reinterpret_input_as_3d ? (a->dimension(1) * a->dimension(2)) : a->dimension(1);
const unsigned int n = b->dimension(0);
const unsigned int k = a->dimension(0);
const unsigned int batch_size = reinterpret_input_as_3d ? a->dimension(3) : a->dimension(2);
int mult_transpose1xW_width = 1;
int mult_interleave4x4_height = 1;
const int depth_output_gemm3d = gemm_info.depth_output_gemm3d();
if(get_arch_from_target(gpu_target) == GPUTarget::BIFROST)
{
mult_transpose1xW_width = 4;
mult_interleave4x4_height = 2;
}
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = 16 / b->element_size();
rhs_info.k0 = 1;
rhs_info.h0 = mult_transpose1xW_width;
rhs_info.interleave = false;
rhs_info.transpose = false;
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = 4;
lhs_info.k0 = 4;
lhs_info.v0 = mult_interleave4x4_height;
lhs_info.interleave = true;
lhs_info.transpose = true;
// Check if we need to reshape the matrix A and matrix B
const bool run_interleave_transpose = is_interleaved_transposed(m, n, k, a->data_type(), reshape_b_only_on_first_run, gpu_target);
// Check if we can run the new reshaped GEMM
const auto workload = static_cast<float>((m * n) / 20.0f);
const bool is_new_gemm_reshaped = (workload > 1600.f) && (get_arch_from_target(gpu_target) == GPUTarget::BIFROST) && run_interleave_transpose && (data_type == DataType::F32);
const bool add_matrix_c = (beta != 0.f && c != nullptr);
const bool is_beta_one = std::abs(1.0f - beta) < 0.00001f;
const bool use_fused_add = is_beta_one && (c != nullptr && c->num_dimensions() == 1) && !is_new_gemm_reshaped;
// if _is_interleaved_transposed is set, force reinterpret_input_as_3d to be false as the output of CLGEMMInterleaveKernel will be 2D
if(run_interleave_transpose)
{
reinterpret_input_as_3d = false;
}
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, depth_output_gemm3d, reinterpret_input_as_3d);
if(run_interleave_transpose)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
if(is_new_gemm_reshaped)
{
GEMMLHSMatrixInfo lhs_info;
// Pick up the GEMM configuration
std::tie(lhs_info, rhs_info) = CLGEMMReshapedConfigurationFactory::create()->configure(m, n, k, batch_size, data_type);
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_lhs_reshaped_shape(*a, lhs_info, gemm_info.reinterpret_input_as_3d())));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeLHSMatrixKernel::validate(a, &tmp_a_info, lhs_info, gemm_info.reinterpret_input_as_3d()));
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info)));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(b, &tmp_b_info, rhs_info));
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyReshapedKernel::validate(matrix_a_info, matrix_b_info, output, alpha, lhs_info, rhs_info, GEMMReshapeInfo(m, n, k, 1, 1,
depth_output_gemm3d, reinterpret_input_as_3d)));
}
else
{
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_lhs_reshaped_shape(*a, lhs_info, gemm_info.reinterpret_input_as_3d())));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeLHSMatrixKernel::validate(a, &tmp_a_info, lhs_info, gemm_info.reinterpret_input_as_3d()));
// Validate transpose kernel
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_rhs_reshaped_shape(*b, rhs_info)));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMReshapeRHSMatrixKernel::validate(b, &tmp_b_info, rhs_info));
}
}
if(!is_new_gemm_reshaped)
{
// Validate matrix multiply
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, (add_matrix_c && !use_fused_add) ? nullptr : c, output, alpha, beta,
run_interleave_transpose, reshape_info, gpu_target, gemm_info.fp_mixed_precision()));
}
if(add_matrix_c && !use_fused_add)
{
// Validate matrix addition kernel
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixAdditionKernel::validate(c, output, beta));
}
return Status{};
}
void CLGEMM::run()
{
prepare();
_memory_group.acquire();
if(_is_interleaved_transposed)
{
// Run interleave kernel
CLScheduler::get().enqueue(_reshape_lhs_kernel, false);
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
CLScheduler::get().enqueue(_reshape_rhs_kernel, false);
}
}
// Run matrix multiply kernel
if(_is_new_gemm_reshaped)
{
CLScheduler::get().enqueue(_mm_reshaped_kernel, !_run_addition);
}
else
{
CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
}
// Run matrix addition kernel
if(_run_addition)
{
CLScheduler::get().enqueue(_ma_kernel);
}
_memory_group.release();
}
void CLGEMM::prepare()
{
if(!_is_prepared)
{
if(_is_interleaved_transposed && _reshape_b_only_on_first_run)
{
// Run transpose kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
CLScheduler::get().enqueue(_reshape_rhs_kernel, false);
_original_b->mark_as_unused();
}
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
} // namespace arm_compute