blob: bdd356ad7f6fa51676dd9b3019751fcdb479ef07 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEArithmeticSubtractionKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NESymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
namespace
{
template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
quantize(float val, const QuantizationInfo &info)
{
return quantize_qasymm8_signed(val, info);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
quantize(float val, const QuantizationInfo &info)
{
return quantize_qasymm8(val, info);
}
template <typename T>
void sub_same(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
constexpr int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
Iterator output(out, window);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
const T broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
auto res = is_sat ? wrapper::vqsub(broadcast_value_vec, non_broadcast_v) : wrapper::vsub(broadcast_value_vec, non_broadcast_v);
if(is_broadcast_input_2)
{
res = wrapper::vmul(res, wrapper::vdup_n(static_cast<T>(-1), ExactTagType{}));
}
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
auto res = is_sat ? wrapper::sub_sat(broadcast_value, non_broadcast_v) : broadcast_value - non_broadcast_v;
if(is_broadcast_input_2)
{
res = static_cast<T>(-1) * res;
}
*(output_ptr + x) = res;
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto val1 = wrapper::vloadq(input1_ptr + x);
const auto val2 = wrapper::vloadq(input2_ptr + x);
const auto res = is_sat ? wrapper::vqsub(val1, val2) : wrapper::vsub(val1, val2);
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto val1 = *(input1_ptr + x);
const auto val2 = *(input2_ptr + x);
*(output_ptr + x) = is_sat ? wrapper::sub_sat(val1, val2) : val1 - val2;
}
},
input1, input2, output);
}
}
template <typename T>
void sub_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
ARM_COMPUTE_UNUSED(is_sat);
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
const float32x4_t voffseto = vdupq_n_f32(oq_info.offset);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
const float32x4_t vscale1 = is_broadcast_input_2 ? vdupq_n_f32(iq1_info.scale) : vdupq_n_f32(iq2_info.scale);
const float32x4_t vscale2 = is_broadcast_input_2 ? vdupq_n_f32(iq2_info.scale) : vdupq_n_f32(iq1_info.scale);
const int32x4_t voffset1 = is_broadcast_input_2 ? vdupq_n_s32(iq1_info.offset) : vdupq_n_s32(iq2_info.offset);
const int32x4_t voffset2 = is_broadcast_input_2 ? vdupq_n_s32(iq2_info.offset) : vdupq_n_s32(iq1_info.offset);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
const auto broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
const auto broadcast_value_vec = wrapper::vdup_n(static_cast<T>(broadcast_value), wrapper::traits::vector_128_tag{});
const float32x4x4_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(broadcast_value_vec))))), voffset2)), vscale2),
}
};
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(non_broadcast_input_ptr + x);
const float32x4x4_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64_
vcvtnq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[2], af.val[2]) : vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[3], af.val[3]) : vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[2], af.val[2]) : vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, !is_broadcast_input_2 ? vsubq_f32(bf.val[3], af.val[3]) : vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
#endif //__aarch64__
}
};
const auto pa = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
const auto pb = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
wrapper::vstore(output_ptr + x, wrapper::vcombine(pa, pb));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale;
const float bfs = static_cast<int32_t>(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale;
*(output_ptr + x) = quantize<T>(is_broadcast_input_2 ? afs - bfs : bfs - afs, out->info()->quantization_info());
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
const int32x4_t voffset1 = vdupq_n_s32(iq1_info.offset);
const int32x4_t voffset2 = vdupq_n_s32(iq2_info.offset);
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const float32x4x4_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
}
};
const float32x4x4_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(b))))), voffset2)), vscale2),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
#endif //__aarch64__
}
};
const auto pa = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
const auto pb = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
wrapper::vstore(output_ptr + x, wrapper::vcombine(pa, pb));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>((*(input1_ptr + x)) - iq1_info.offset) * iq1_info.scale;
const float bfs = static_cast<int32_t>((*(input2_ptr + x)) - iq2_info.offset) * iq2_info.scale;
*(output_ptr + x) = quantize<T>((afs - bfs), out->info()->quantization_info());
}
},
input1, input2, output);
}
}
void sub_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
ARM_COMPUTE_UNUSED(is_sat);
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const int16_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
const int16_t broadcast_value = *reinterpret_cast<const int16_t *>(broadcast_input.ptr());
const int16x8_t broadcast_value_vec = vdupq_n_s16(broadcast_value);
const float32x4x2_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(broadcast_value_vec))), vscale2),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(broadcast_value_vec))), vscale2),
}
};
const float bfs = static_cast<int32_t>(broadcast_value) * broadcast_qinfo.scale;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8_t a = vld1q_s16(non_broadcast_input_ptr + x);
const float32x4x2_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
#endif //__aarch64__
}
};
const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
vst1q_s16(output_ptr + x, pa);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x)) * non_broadcast_qinfo.scale;
*(output_ptr + x) = quantize_qsymm16(is_broadcast_input_2 ? (bfs - afs) : (afs - bfs), oq_info);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8_t a = vld1q_s16(input1_ptr + x);
const int16x8_t b = vld1q_s16(input2_ptr + x);
const float32x4x2_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
}
};
const float32x4x2_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(b))), vscale2),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(b))), vscale2),
}
};
const int32x4x2_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmulq_f32(vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmulq_f32(vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
#endif //__aarch64__
}
};
const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
vst1q_s16(output_ptr + x, pa);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>((*(input1_ptr + x))) * iq1_info.scale;
const float bfs = static_cast<int32_t>((*(input2_ptr + x))) * iq2_info.scale;
*(output_ptr + x) = quantize_qsymm16((afs - bfs), out->info()->quantization_info());
}
},
input1, input2, output);
}
}
void sub_S16_U8_S16_impl(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat, bool is_swapped)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
if(!is_sat)
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = wrapper::vloadq(input1_ptr + x);
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
const auto res = is_swapped ? wrapper::vsub(vin2, vin1) : wrapper::vsub(vin1, vin2);
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto res = is_swapped ? static_cast<int16_t>(*(input2_ptr + x)) - *(input1_ptr + x) : *(input1_ptr + x) - static_cast<int16_t>(*(input2_ptr + x));
*(output_ptr + x) = res;
}
}
else
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = wrapper::vloadq(input1_ptr + x);
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
const auto res = is_swapped ? wrapper::vqsub(vin2, vin1) : wrapper::vqsub(vin1, vin2);
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto res = is_swapped ? wrapper::sub_sat(static_cast<int16_t>(*(input2_ptr + x)), *(input1_ptr + x)) : wrapper::sub_sat(*(input1_ptr + x), static_cast<int16_t>(*(input2_ptr + x)));
*(output_ptr + x) = res;
}
}
},
input1, input2, output);
}
void sub_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
sub_S16_U8_S16_impl(in1, in2, out, window, is_sat, false);
}
void sub_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
// Swap arguments
sub_S16_U8_S16_impl(in2, in1, out, window, is_sat, true);
}
void sub_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
if(!is_sat)
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vsub(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int16_t>(*(input1_ptr + x)) - static_cast<int16_t>(*(input2_ptr + x));
}
}
else
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vqsub(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = wrapper::sub_sat(static_cast<int16_t>(*(input1_ptr + x)),
static_cast<int16_t>(*(input2_ptr + x)));
}
}
},
input1, input2, output);
}
inline Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy)
{
ARM_COMPUTE_UNUSED(policy);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::S32, DataType::F16,
DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::S32, DataType::F16,
DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::S32, DataType::F16,
DataType::F32);
const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
!(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
&& !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8)
&& !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED)
&& !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S32 && input2.data_type() == DataType::S32)
&& !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32)
&& !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16),
"You called subtract with the wrong image formats");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && policy == ConvertPolicy::WRAP)
|| (input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && policy == ConvertPolicy::WRAP)
|| (input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && policy == ConvertPolicy::WRAP),
"Convert policy cannot be WRAP if datatype is quantized");
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
!(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8)
&& !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8)
&& !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && output.data_type() == DataType::QASYMM8_SIGNED)
&& !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && output.data_type() == DataType::QSYMM16)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S32 && input2.data_type() == DataType::S32 && output.data_type() == DataType::S32)
&& !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32)
&& !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16),
"You called subtract with the wrong image formats");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
} // namespace
NEArithmeticSubtractionKernel::NEArithmeticSubtractionKernel()
: _func(nullptr), _policy(ConvertPolicy::WRAP)
{
}
void NEArithmeticSubtractionKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output, ConvertPolicy policy)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output, policy));
_policy = policy;
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
// Auto initialize output if not initialized
set_shape_if_empty(*output, out_shape);
switch(input1->data_type())
{
case DataType::U8:
if(input2->data_type() == DataType::U8 && output->data_type() == DataType::U8)
{
_func = &sub_same<uint8_t>;
}
else if(input2->data_type() == DataType::U8 && output->data_type() == DataType::S16)
{
_func = &sub_U8_U8_S16;
}
else
{
_func = &sub_U8_S16_S16;
}
break;
case DataType::QASYMM8:
_func = &sub_quantized<uint8_t>;
set_data_type_if_unknown(*output, DataType::QASYMM8);
break;
case DataType::QASYMM8_SIGNED:
_func = &sub_quantized<int8_t>;
set_data_type_if_unknown(*output, DataType::QASYMM8_SIGNED);
break;
case DataType::S16:
if(input2->data_type() == DataType::U8)
{
_func = &sub_S16_U8_S16;
}
else
{
_func = &sub_same<int16_t>;
}
set_format_if_unknown(*output, Format::S16);
break;
case DataType::QSYMM16:
_func = &sub_QSYMM16_QSYMM16_QSYMM16;
set_data_type_if_unknown(*output, DataType::QSYMM16);
break;
case DataType::S32:
_func = &sub_same<int32_t>;
set_format_if_unknown(*output, Format::S32);
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &sub_same<float16_t>;
set_format_if_unknown(*output, Format::F16);
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
_func = &sub_same<float>;
set_format_if_unknown(*output, Format::F32);
break;
default:
_func = nullptr;
}
// NEArithmeticSubtractionKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(valid_region);
Window win = calculate_max_window(valid_region, Steps());
INEKernel::configure(win);
}
Status NEArithmeticSubtractionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy));
return Status{};
}
void NEArithmeticSubtractionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
// Dispatch kernel
(*_func)(tensors.get_const_tensor(TensorType::ACL_SRC_0),
tensors.get_const_tensor(TensorType::ACL_SRC_1),
tensors.get_tensor(TensorType::ACL_DST),
window,
(_policy == ConvertPolicy::SATURATE));
}
} // namespace arm_compute