blob: afb08e5d1c3bf781d1c78a3cb92b1079c4f8cc35 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEBatchNormalizationLayerKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <map>
namespace arm_compute
{
namespace
{
Status
validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_UNUSED(epsilon);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
if(act_info.enabled())
{
ActivationLayerInfo::ActivationFunction act = act_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a());
}
if(nullptr != output)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var);
if(beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
}
if(gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
}
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0));
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *mean, ITensorInfo *var, ITensorInfo *gamma, ITensorInfo *beta)
{
ARM_COMPUTE_UNUSED(mean, var, gamma, beta);
// Configure kernel window
Window win = calculate_max_window(*input, Steps());
if(output != nullptr)
{
// Output auto initialization if not yet initialized
auto_init_if_empty(*output, *input->clone());
// NEBatchNormalizationLayerKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
}
return std::make_pair(Status{}, win);
}
} //namespace
template <typename T, bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_nchw(const Window &window)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_to_use = window;
win_to_use.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win_to_use);
Iterator output(_output, win_to_use);
F activation_functor(_act_info);
// Hold information about the current feature map we are iterating.
// Only compute denominator and NEON vectors once per feature map.
int slice = -1;
const auto input_mean = reinterpret_cast<const T *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const T *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const T *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const T *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
T mean = static_cast<T>(0);
T var = static_cast<T>(0);
T gamma = static_cast<T>(1);
T beta = static_cast<T>(0);
T denominator = static_cast<T>(0);
auto mean_vec = wrapper::vdup_n(mean, ExactTagType{});
auto var_vec = wrapper::vdup_n(var, ExactTagType{});
auto gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
auto beta_vec = wrapper::vdup_n(beta, ExactTagType{});
auto denominator_vec = wrapper::vdup_n(denominator, ExactTagType{});
const auto epsilon_vec = wrapper::vdup_n(static_cast<T>(_epsilon), ExactTagType{});
execute_window_loop(win_to_use, [&](const Coordinates & id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
if(slice != id.z())
{
mean = input_mean[id.z()];
var = input_var[id.z()];
mean_vec = wrapper::vdup_n(mean, ExactTagType{});
var_vec = wrapper::vdup_n(var, ExactTagType{});
if(input_gamma != nullptr)
{
gamma = input_gamma[id.z()];
gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
}
if(input_beta != nullptr)
{
beta = input_beta[id.z()];
beta_vec = wrapper::vdup_n(beta, ExactTagType{});
}
// Calculate denominator
denominator_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
denominator = wrapper::vgetlane(denominator_vec, 0);
slice = id.z();
}
// Perform core calculations using vector operations
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Calculate x bar
const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
const auto x_bar = wrapper::vmul(numerator, denominator_vec);
auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const T numerator = input_ptr[x] - mean;
const T x_bar = numerator * denominator;
T res = beta + x_bar * gamma;
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
*(output_ptr + x) = res;
}
},
input, output);
}
template <typename T, bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_nhwc(const Window &window)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
const int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win_collapsed);
Iterator output(_output, win_collapsed);
F activation_functor(_act_info);
const auto input_mean = reinterpret_cast<const T *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const T *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const T *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const T *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto epsilon_vec = wrapper::vdup_n(static_cast<T>(_epsilon), ExactTagType{});
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Perform core calculations using vector operations
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Conctruct vectors
const auto mean_vec = wrapper::vloadq(input_mean + x);
const auto var_vec = wrapper::vloadq(input_var + x);
const auto gamma_vec = (input_gamma != nullptr) ? wrapper::vloadq(input_gamma + x) : wrapper::vdup_n(static_cast<T>(1.f), ExactTagType{});
const auto beta_vec = (input_beta != nullptr) ? wrapper::vloadq(input_beta + x) : wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
// Calculate denominator
const auto denominator = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
// Calculate x bar
const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec);
const auto x_bar = wrapper::vmul(numerator, denominator);
auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
// Conctruct vectors
const T gamma = (input_gamma != nullptr) ? input_gamma[x] : 1.f;
const T beta = (input_beta != nullptr) ? input_beta[x] : 0.f;
const T denominator = sqrt(input_var[x] + _epsilon);
const T numerator = input_ptr[x] - input_mean[x];
const T x_bar = numerator / denominator;
T res = beta + x_bar * gamma;
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
*reinterpret_cast<T *>(output_ptr + x) = res;
}
},
input, output);
}
void NEBatchNormalizationLayerKernel::configure_non_fused()
{
const bool is_nhwc = _input->info()->data_layout() == DataLayout::NHWC;
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float16_t, false, detail::dummy<float16_t, 8>> :
&NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, false, detail::dummy<float16_t, 8>>;
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float, false, detail::dummy<float, 4>> :
&NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, false, detail::dummy<float, 4>>;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
void NEBatchNormalizationLayerKernel::configure_fused()
{
// NCHW Fused Batched Normalization with activation functions : FP32
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::relu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::brelu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float, true, detail::lubrelu<float, 4>> }
};
// NHWC Fused Batched Normalization with activation functions : FP32
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nhwc =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float, true, detail::relu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float, true, detail::brelu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float, true, detail::lubrelu<float, 4>> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// NCHW Fused Batched Normalization with activation functions : FP16
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw<float16_t, true, detail::lubrelu<float16_t, 8>> }
};
// NHWC Fused Batched Normalization with activation functions : FP16
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nhwc =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float16_t, true, detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float16_t, true, detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nhwc<float16_t, true, detail::lubrelu<float16_t, 8>> }
};
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f16_nhwc[_act_info.activation()] : bn_fused_map_f16_nchw[_act_info.activation()];
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f32_nhwc[_act_info.activation()] : bn_fused_map_f32_nchw[_act_info.activation()];
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info()
{
}
void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output,
const ITensor *mean, const ITensor *var,
const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr,
mean->info(), var->info(),
(beta != nullptr) ? beta->info() : nullptr,
(gamma != nullptr) ? gamma->info() : nullptr,
epsilon, act_info));
_input = input;
_output = input;
_mean = mean;
_var = var;
_gamma = gamma;
_beta = beta;
_epsilon = epsilon;
_act_info = act_info;
const bool run_in_place = (output == nullptr) || (output == input);
if(!run_in_place)
{
_output = output;
}
// Configure activation function to run
if(_act_info.enabled())
{
configure_fused();
}
else
{
configure_non_fused();
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), (run_in_place) ? nullptr : output->info(), mean->info(), var->info(), (gamma != nullptr) ? gamma->info() : nullptr,
(beta != nullptr) ? beta->info() : nullptr);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output,
const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output ? output->clone().get() : nullptr, mean->clone().get(), var->clone().get(),
(gamma != nullptr) ? gamma->clone().get() : nullptr, (beta != nullptr) ? beta->clone().get() : nullptr)
.first);
return Status{};
}
void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}
} // namespace arm_compute