blob: d6c89a455384aeb006ef48a68c45a9ef656a1812 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEDepthConvertLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/SaturateCast.h"
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, ConvertPolicy policy, uint32_t shift)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(output);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(output);
ARM_COMPUTE_UNUSED(policy);
ARM_COMPUTE_RETURN_ERROR_ON(input == output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::U8,
DataType::S16, DataType::U16, DataType::BFLOAT16, DataType::F16,
DataType::F32, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::U8,
DataType::S16, DataType::U16, DataType::BFLOAT16, DataType::F16,
DataType::U32, DataType::S32, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(shift >= 8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QASYMM8_SIGNED && (output->data_type() != DataType::S16 && output->data_type() != DataType::S32
&& output->data_type() != DataType::F16 && output->data_type() != DataType::F32),
"Only data_types supported [in] QASYMM8 -> [out] U16, S16, S32, F16, F32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QASYMM8 && (output->data_type() != DataType::S16 && output->data_type() != DataType::U16
&& output->data_type() != DataType::S32 && output->data_type() != DataType::F16 && output->data_type() != DataType::F32),
"Only data_types supported [in] QASYMM8 -> [out] U16, S16, S32, F16, F32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::U8 && (output->data_type() != DataType::S16 && output->data_type() != DataType::U16
&& output->data_type() != DataType::S32 && output->data_type() != DataType::F16 && output->data_type() != DataType::F32),
"Only data_types supported [in] U8 -> [out] U16, S16, S32, F16, F32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::U16 && (output->data_type() != DataType::U8 && output->data_type() != DataType::U32),
"Only data_types supported [in] U16 -> [out] U8, U32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::S16 && (output->data_type() != DataType::QASYMM8_SIGNED && output->data_type() != DataType::U8 && output->data_type() != DataType::S32),
"Only data_types supported [in] S16 -> [out] U8, S32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::BFLOAT16 && output->data_type() != DataType::F32,
"Only data_types supported [in] BFLOAT16 -> [out] F32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::F16 && (output->data_type() != DataType::QASYMM8_SIGNED && output->data_type() != DataType::QASYMM8
&& output->data_type() != DataType::U8
&& output->data_type() != DataType::F32 && output->data_type() != DataType::S32),
"Only data_types supported [in] F16 -> [out] QASYMM8, F32, S32, U8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::F32 && (output->data_type() != DataType::QASYMM8_SIGNED && output->data_type() != DataType::QASYMM8
&& output->data_type() != DataType::F16 && output->data_type() != DataType::BFLOAT16
&& output->data_type() != DataType::S32 && output->data_type() != DataType::U8),
"Only data_types supported [in] F32 -> [out] QASYMM8, BFLOAT16, F16, S32, U8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::S32 && (output->data_type() != DataType::QASYMM8_SIGNED && output->data_type() != DataType::QASYMM8
&& output->data_type() != DataType::F16
&& output->data_type() != DataType::F32 && output->data_type() != DataType::U8),
"Only data_types supported [in] S32 -> [out] QASYMM8, F16, F32, U8");
// Validate in case of configured output
if(output->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
return Status{};
}
} // namespace
NEDepthConvertLayerKernel::NEDepthConvertLayerKernel()
: _input(nullptr), _output(nullptr), _policy(), _shift(0)
{
}
void NEDepthConvertLayerKernel::configure(const ITensor *input, ITensor *output, ConvertPolicy policy, uint32_t shift)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Auto initialize output shape if not initialized (We can only auto-configure the shape, datatype must be given)
set_shape_if_empty(*output->info(), input->info()->tensor_shape());
_input = input;
_output = output;
_policy = policy;
_shift = shift;
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), policy, shift));
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
ICPPKernel::configure(win);
}
Status NEDepthConvertLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, ConvertPolicy policy, uint32_t shift)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, policy, shift));
return Status{};
}
void NEDepthConvertLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON_NULLPTR(_input, _output);
ARM_COMPUTE_ERROR_ON(_input == _output);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const int window_step_x = 16;
Window win{ window };
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, win);
Iterator output(_output, win);
switch(_input->info()->data_type())
{
case DataType::QASYMM8_SIGNED:
{
const int16x8_t b = vdupq_n_s16(_shift);
switch(_output->info()->data_type())
{
case DataType::S16:
{
/* Up-conversion QASYMM8_SIGNED -> S16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int8x16_t texels_s8 = vld1q_s8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vmovl_s8(vget_low_s8(texels_s8)), b),
vshlq_s16(vmovl_s8(vget_high_s8(texels_s8)), b)
}
};
vst1q_s16(output_ptr + x, texels.val[0]);
vst1q_s16(output_ptr + x + 8, texels.val[1]);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int16_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
case DataType::S32:
{
/* Up-conversion QASYMM8_SIGNED -> S32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int8x16_t texels_s8 = vld1q_s8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vmovl_s8(vget_low_s8(texels_s8)), b),
vshlq_s16(vmovl_s8(vget_high_s8(texels_s8)), b)
}
};
vst1q_s32(output_ptr + x, vmovl_s16(vget_low_s16(texels.val[0])));
vst1q_s32(output_ptr + x + 4, vmovl_s16(vget_high_s16(texels.val[0])));
vst1q_s32(output_ptr + x + 8, vmovl_s16(vget_low_s16(texels.val[1])));
vst1q_s32(output_ptr + x + 12, vmovl_s16(vget_high_s16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int32_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
case DataType::F32:
{
/* Up-conversion QASYMM8_SIGNED -> F32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int8x16_t texels_s8 = vld1q_s8(reinterpret_cast<int8_t *>(input.ptr()));
const int16x8x2_t texels =
{
{
vshlq_s16(vmovl_s8(vget_low_s8(texels_s8)), b),
vshlq_s16(vmovl_s8(vget_high_s8(texels_s8)), b)
}
};
vst1q_f32(output_ptr + x, vcvtq_f32_s32(vmovl_s16(vget_low_s16(texels.val[0]))));
vst1q_f32(output_ptr + x + 4, vcvtq_f32_s32(vmovl_s16(vget_high_s16(texels.val[0]))));
vst1q_f32(output_ptr + x + 8, vcvtq_f32_s32(vmovl_s16(vget_low_s16(texels.val[1]))));
vst1q_f32(output_ptr + x + 12, vcvtq_f32_s32(vmovl_s16(vget_high_s16(texels.val[1]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
/* Up-conversion QASYMM8_SIGNED -> F16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int8x16_t texels_s8 = vld1q_s8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vmovl_s8(vget_low_s8(texels_s8)), b),
vshlq_s16(vmovl_s8(vget_high_s8(texels_s8)), b)
}
};
vst1q_f16(output_ptr + x, vcvtq_f16_s16(texels.val[0]));
vst1q_f16(output_ptr + x + 8, vcvtq_f16_s16(texels.val[1]));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float16_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
}
case DataType::QASYMM8:
case DataType::U8:
{
const int16x8_t b = vdupq_n_s16(_shift);
switch(_output->info()->data_type())
{
case DataType::S16:
{
/* Up-conversion U8 -> S16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t texels_u8 = vld1q_u8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(texels_u8))), b),
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(texels_u8))), b)
}
};
vst1q_s16(output_ptr + x, texels.val[0]);
vst1q_s16(output_ptr + x + 8, texels.val[1]);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
auto in = static_cast<int32_t>(*(input_ptr + x));
*(output_ptr + x) = in << _shift;
}
},
input, output);
break;
}
case DataType::S32:
{
/* Up-conversion U8 -> S32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t texels_u8 = vld1q_u8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(texels_u8))), b),
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(texels_u8))), b)
}
};
vst1q_s32(output_ptr + x, vmovl_s16(vget_low_s16(texels.val[0])));
vst1q_s32(output_ptr + x + 4, vmovl_s16(vget_high_s16(texels.val[0])));
vst1q_s32(output_ptr + x + 8, vmovl_s16(vget_low_s16(texels.val[1])));
vst1q_s32(output_ptr + x + 12, vmovl_s16(vget_high_s16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
auto in = static_cast<uint32_t>(*(input_ptr + x));
*(output_ptr + x) = in << _shift;
}
},
input, output);
break;
}
case DataType::F32:
{
/* Up-conversion U8 -> F32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t texels_u8 = vld1q_u8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(texels_u8))), b),
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(texels_u8))), b)
}
};
vst1q_f32(output_ptr + x, vcvtq_f32_s32(vmovl_s16(vget_low_s16(texels.val[0]))));
vst1q_f32(output_ptr + x + 4, vcvtq_f32_s32(vmovl_s16(vget_high_s16(texels.val[0]))));
vst1q_f32(output_ptr + x + 8, vcvtq_f32_s32(vmovl_s16(vget_low_s16(texels.val[1]))));
vst1q_f32(output_ptr + x + 12, vcvtq_f32_s32(vmovl_s16(vget_high_s16(texels.val[1]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
auto in = static_cast<uint32_t>(*(input_ptr + x));
*(output_ptr + x) = static_cast<float>(in << _shift);
}
},
input, output);
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
/* Up-conversion U8 -> F16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t texels_u8 = vld1q_u8(input_ptr + x);
const int16x8x2_t texels =
{
{
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(texels_u8))), b),
vshlq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(texels_u8))), b)
}
};
vst1q_f16(output_ptr + x, vcvtq_f16_s16(texels.val[0]));
vst1q_f16(output_ptr + x + 8, vcvtq_f16_s16(texels.val[1]));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float16_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::U16:
{
/* Up-conversion U8 -> U16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t texels_u8 = vld1q_u8(input_ptr + x);
const uint16x8x2_t texels =
{
{
vshlq_u16(vmovl_u8(vget_low_u8(texels_u8)), b),
vshlq_u16(vmovl_u8(vget_high_u8(texels_u8)), b)
}
};
vst1q_u16(output_ptr + x, texels.val[0]);
vst1q_u16(output_ptr + x + 8, texels.val[1]);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<uint16_t>(*(input_ptr + x)) << _shift;
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
}
case DataType::S16:
{
switch(_output->info()->data_type())
{
case DataType::QASYMM8_SIGNED:
{
const int16x8_t b = vdupq_n_s16(-static_cast<int16_t>(_shift));
/* Down-conversion S16 -> QASYMM8_SIGNED */
if(ConvertPolicy::SATURATE == _policy)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t texels =
{
{
vqshlq_s16(vld1q_s16(input_ptr + x), b),
vqshlq_s16(vld1q_s16(input_ptr + x + 8), b)
}
};
vst1q_s8(output_ptr + x, vcombine_s8(vqmovn_s16(texels.val[0]), vqmovn_s16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<int8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t texels =
{
{
vshlq_s16(vld1q_s16(input_ptr + x), b),
vshlq_s16(vld1q_s16(input_ptr + x + 8), b)
}
};
vst1q_s8(output_ptr + x, vcombine_s8(vmovn_s16(texels.val[0]), vmovn_s16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
break;
}
case DataType::U8:
{
const int16x8_t b = vdupq_n_s16(-static_cast<int16_t>(_shift));
/* Down-conversion S16 -> U8 */
if(ConvertPolicy::SATURATE == _policy)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t texels =
{
{
vqshlq_s16(vld1q_s16(input_ptr + x), b),
vqshlq_s16(vld1q_s16(input_ptr + x + 8), b)
}
};
vst1q_u8(output_ptr + x, vcombine_u8(vqmovun_s16(texels.val[0]), vqmovun_s16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t texels =
{
{
vshlq_s16(vld1q_s16(input_ptr + x), b),
vshlq_s16(vld1q_s16(input_ptr + x + 8), b)
}
};
vst1q_u8(output_ptr + x, vcombine_u8(vmovn_u16(vreinterpretq_u16_s16(texels.val[0])),
vmovn_u16(vreinterpretq_u16_s16(texels.val[1]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
break;
}
case DataType::S32:
{
const int32x4_t b = vdupq_n_s32(_shift);
/* Up-conversion S16 -> S32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8x2_t texels =
{
{
vld1q_s16(input_ptr + x),
vld1q_s16(input_ptr + x + 8)
}
};
const int32x4x4_t texels_s32 =
{
{
vshlq_s32(vmovl_s16(vget_low_s16(texels.val[0])), b),
vshlq_s32(vmovl_s16(vget_high_s16(texels.val[0])), b),
vshlq_s32(vmovl_s16(vget_low_s16(texels.val[1])), b),
vshlq_s32(vmovl_s16(vget_high_s16(texels.val[1])), b)
}
};
vst1q_s32(output_ptr + x, texels_s32.val[0]);
vst1q_s32(output_ptr + x + 4, texels_s32.val[1]);
vst1q_s32(output_ptr + x + 8, texels_s32.val[2]);
vst1q_s32(output_ptr + x + 12, texels_s32.val[3]);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int32_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
}
case DataType::U16:
{
switch(_output->info()->data_type())
{
case DataType::U8:
{
const int16x8_t b = vdupq_n_s16(-static_cast<int16_t>(_shift));
/* Down-conversion U16 -> U8 */
if(ConvertPolicy::SATURATE == _policy)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint16x8x2_t texels =
{
{
vqshlq_u16(vld1q_u16(input_ptr + x), b),
vqshlq_u16(vld1q_u16(input_ptr + x + 8), b)
}
};
vst1q_u8(output_ptr + x, vcombine_u8(vqmovn_u16(texels.val[0]), vqmovn_u16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint16x8x2_t texels =
{
{
vshlq_u16(vld1q_u16(input_ptr + x), b),
vshlq_u16(vld1q_u16(input_ptr + x + 8), b)
}
};
vst1q_u8(output_ptr + x, vcombine_u8(vmovn_u16(texels.val[0]), vmovn_u16(texels.val[1])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
break;
}
case DataType::U32:
{
const int32x4_t b = vdupq_n_s32(_shift);
/* Up-conversion U16 -> U32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const uint16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint16x8x2_t texels =
{
{
vld1q_u16(input_ptr + x),
vld1q_u16(input_ptr + x + 8)
}
};
vst1q_u32(output_ptr + x, vshlq_u32(vmovl_u16(vget_low_u16(texels.val[0])), b));
vst1q_u32(output_ptr + x + 4, vshlq_u32(vmovl_u16(vget_high_u16(texels.val[0])), b));
vst1q_u32(output_ptr + x + 8, vshlq_u32(vmovl_u16(vget_low_u16(texels.val[1])), b));
vst1q_u32(output_ptr + x + 12, vshlq_u32(vmovl_u16(vget_high_u16(texels.val[1])), b));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<uint32_t>(*(input_ptr + x) << _shift);
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
}
#if defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16)
case DataType::BFLOAT16:
switch(_output->info()->data_type())
{
case DataType::F32:
{
/* Up-conversion BFLOAT16 -> F32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const bfloat16 *>(input.ptr());
const auto output_ptr = reinterpret_cast<float *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint16x8x2_t texels =
{
{
vld1q_u16(reinterpret_cast<uint16_t *>(input.ptr())),
vld1q_u16(reinterpret_cast<uint16_t *>(input.ptr()) + 8)
}
};
vst1q_f32(reinterpret_cast<float *>(output.ptr()),
vreinterpretq_f32_u32(vshlq_n_u32(vmovl_u16(vget_low_u16(texels.val[0])), 16)));
vst1q_f32(reinterpret_cast<float *>(output.ptr()) + 4,
vreinterpretq_f32_u32(vshlq_n_u32(vmovl_u16(vget_high_u16(texels.val[0])), 16)));
vst1q_f32(reinterpret_cast<float *>(output.ptr()) + 8,
vreinterpretq_f32_u32(vshlq_n_u32(vmovl_u16(vget_low_u16(texels.val[1])), 16)));
vst1q_f32(reinterpret_cast<float *>(output.ptr()) + 12,
vreinterpretq_f32_u32(vshlq_n_u32(vmovl_u16(vget_high_u16(texels.val[1])), 16)));
}
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = float(*(input_ptr + x));
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type unsupported");
}
break;
#endif /* defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16) */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
switch(_output->info()->data_type())
{
case DataType::QASYMM8_SIGNED:
{
const float16_t scale_s = 1 << _shift;
const float16x8_t scale = vdupq_n_f16(scale_s);
/* Down-conversion F16 -> QASYMM8_SIGNED (Always saturating) */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float16x8x2_t texels =
{
{
vmulq_f16(vld1q_f16(input_ptr + x), scale),
vmulq_f16(vld1q_f16(input_ptr + x + 8), scale),
}
};
vst1q_s8(output_ptr + x, vcombine_s8(vqmovn_s16(vcvtq_s16_f16(texels.val[0])), vqmovn_s16(vcvtq_s16_f16(texels.val[1]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<int8_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::QASYMM8:
case DataType::U8:
{
const float16_t scale_s = 1 << _shift;
const float16x8_t scale = vdupq_n_f16(scale_s);
/* Down-conversion F16 -> QASYMM8/U8 (Always saturating) */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float16x8x2_t texels =
{
{
vmulq_f16(vld1q_f16(input_ptr + x), scale),
vmulq_f16(vld1q_f16(input_ptr + x + 8), scale),
}
};
vst1q_u8(output_ptr + x, vcombine_u8(vqmovun_s16(vcvtq_s16_f16(texels.val[0])), vqmovun_s16(vcvtq_s16_f16(texels.val[1]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<uint8_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::F32:
{
const float scale_s = 1 << _shift;
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Up-conversion F16 -> F32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float16x8x2_t texels =
{
{
vld1q_f16(input_ptr + x),
vld1q_f16(input_ptr + x + 8)
}
};
vst1q_f32(output_ptr + x, vmulq_f32(vcvt_f32_f16(vget_low_f16(texels.val[0])), scale));
vst1q_f32(output_ptr + x + 4, vmulq_f32(vcvt_f32_f16(vget_high_f16(texels.val[0])), scale));
vst1q_f32(output_ptr + x + 8, vmulq_f32(vcvt_f32_f16(vget_low_f16(texels.val[1])), scale));
vst1q_f32(output_ptr + x + 12, vmulq_f32(vcvt_f32_f16(vget_high_f16(texels.val[1])), scale));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::S32:
{
const float scale_s = 1 << _shift;
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Up-conversion F16 -> S32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float16_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float16x8x2_t texels =
{
{
vld1q_f16(input_ptr + x),
vld1q_f16(input_ptr + x + 8)
}
};
vst1q_s32(output_ptr + x, vcvtq_s32_f32(vmulq_f32(vcvt_f32_f16(vget_low_f16(texels.val[0])), scale)));
vst1q_s32(output_ptr + x + 4, vcvtq_s32_f32(vmulq_f32(vcvt_f32_f16(vget_high_f16(texels.val[0])), scale)));
vst1q_s32(output_ptr + x + 8, vcvtq_s32_f32(vmulq_f32(vcvt_f32_f16(vget_low_f16(texels.val[1])), scale)));
vst1q_s32(output_ptr + x + 12, vcvtq_s32_f32(vmulq_f32(vcvt_f32_f16(vget_high_f16(texels.val[1])), scale)));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int32_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
switch(_output->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
const float scale_s = 1.f / (1 << _shift);
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Down-conversion F32 -> F16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t texels =
{
{
vmulq_f32(vld1q_f32(input_ptr + x), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 4), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 8), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 12), scale)
}
};
vst1q_f16(output_ptr + x, vcombine_f16(vcvt_f16_f32(texels.val[0]), vcvt_f16_f32(texels.val[1])));
vst1q_f16(output_ptr + x + 8, vcombine_f16(vcvt_f16_f32(texels.val[2]), vcvt_f16_f32(texels.val[3])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float16_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
#if defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16)
case DataType::BFLOAT16:
{
/* Down-conversion F32 -> BFLOAT16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
const auto output_ptr = reinterpret_cast<bfloat16 *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
wrapper::vcvt_bf16_f32(reinterpret_cast<float *>(input.ptr()),
reinterpret_cast<uint16_t *>(output.ptr()));
wrapper::vcvt_bf16_f32(reinterpret_cast<float *>(input.ptr()) + 8,
reinterpret_cast<uint16_t *>(output.ptr()) + 8);
}
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = *(input_ptr + x);
}
},
input, output);
break;
}
#endif /* defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16) */
case DataType::S32:
{
const float scale_s = 1.f / (1 << _shift);
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Conversion F32 -> S32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t texels =
{
{
vmulq_f32(vld1q_f32(input_ptr + x), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 4), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 8), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 12), scale),
}
};
vst1q_s32(output_ptr + x, vcvtq_s32_f32(texels.val[0]));
vst1q_s32(output_ptr + x + 4, vcvtq_s32_f32(texels.val[1]));
vst1q_s32(output_ptr + x + 8, vcvtq_s32_f32(texels.val[2]));
vst1q_s32(output_ptr + x + 12, vcvtq_s32_f32(texels.val[3]));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int32_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::QASYMM8:
case DataType::U8:
{
const float scale_s = 1.f / (1 << _shift);
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Down-conversion F32 -> U8 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t texels =
{
{
vmulq_f32(vld1q_f32(input_ptr + x), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 4), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 8), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 12), scale),
}
};
vst1_u8(output_ptr + x, vqmovn_u16(vcombine_u16(vqmovun_s32(vcvtq_s32_f32(texels.val[0])), vqmovun_s32(vcvtq_s32_f32(texels.val[1])))));
vst1_u8(output_ptr + x + 8, vqmovn_u16(vcombine_u16(vqmovun_s32(vcvtq_s32_f32(texels.val[2])), vqmovun_s32(vcvtq_s32_f32(texels.val[3])))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<uint8_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::QASYMM8_SIGNED:
{
const float scale_s = 1.f / (1 << _shift);
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Down-conversion F32 -> QASYMM8_SIGNED */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t texels =
{
{
vmulq_f32(vld1q_f32(input_ptr + x), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 4), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 8), scale),
vmulq_f32(vld1q_f32(input_ptr + x + 12), scale),
}
};
vst1_s8(output_ptr + x, vqmovn_s16(vcombine_s16(vqmovn_s32(vcvtq_s32_f32(texels.val[0])), vqmovn_s32(vcvtq_s32_f32(texels.val[1])))));
vst1_s8(output_ptr + x + 8, vqmovn_s16(vcombine_s16(vqmovn_s32(vcvtq_s32_f32(texels.val[2])), vqmovn_s32(vcvtq_s32_f32(texels.val[3])))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<int8_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
case DataType::S32:
switch(_output->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
const float scale_s = 1.f / (1 << _shift);
const float32x4_t scale = vdupq_n_f32(scale_s);
/* Down-conversion S32 -> F16 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t texels =
{
{
vmulq_f32(vcvtq_f32_s32(vld1q_s32(input_ptr + x)), scale),
vmulq_f32(vcvtq_f32_s32(vld1q_s32(input_ptr + x + 4)), scale),
vmulq_f32(vcvtq_f32_s32(vld1q_s32(input_ptr + x + 8)), scale),
vmulq_f32(vcvtq_f32_s32(vld1q_s32(input_ptr + x + 12)), scale)
}
};
vst1q_f16(output_ptr + x, vcombine_f16(vcvt_f16_f32(texels.val[0]), vcvt_f16_f32(texels.val[1])));
vst1q_f16(output_ptr + x + 8, vcombine_f16(vcvt_f16_f32(texels.val[2]), vcvt_f16_f32(texels.val[3])));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float16_t>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
const int scale_s = 1.f / (1 << _shift);
const int32x4_t scale = vdupq_n_s32(scale_s);
/* Conversion S32 -> F32 */
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<float *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x4_t texels =
{
{
vmulq_s32(vld1q_s32(input_ptr + x), scale),
vmulq_s32(vld1q_s32(input_ptr + x + 4), scale),
vmulq_s32(vld1q_s32(input_ptr + x + 8), scale),
vmulq_s32(vld1q_s32(input_ptr + x + 12), scale),
}
};
vst1q_f32(output_ptr + x, vcvtq_f32_s32(texels.val[0]));
vst1q_f32(output_ptr + x + 4, vcvtq_f32_s32(texels.val[1]));
vst1q_f32(output_ptr + x + 8, vcvtq_f32_s32(texels.val[2]));
vst1q_f32(output_ptr + x + 12, vcvtq_f32_s32(texels.val[3]));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<float>(*(input_ptr + x) * scale_s);
}
},
input, output);
break;
}
case DataType::QASYMM8_SIGNED:
{
const int32x4_t b = vdupq_n_s32(-static_cast<int32_t>(_shift));
/* Down-conversion S32 -> QASYMM8_SIGNED */
if(ConvertPolicy::SATURATE == _policy)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x4_t texels =
{
{
vqshlq_s32(vld1q_s32(input_ptr + x), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 4), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 8), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 12), b)
}
};
vst1_s8(output_ptr + x, vqmovn_s16(vcombine_s16(vqmovn_s32(texels.val[0]), vqmovn_s32(texels.val[1]))));
vst1_s8(output_ptr + x + 8, vqmovn_s16(vcombine_s16(vqmovn_s32(texels.val[2]), vqmovn_s32(texels.val[3]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<int8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x4_t texels =
{
{
vshlq_s32(vld1q_s32(input_ptr + x), b),
vshlq_s32(vld1q_s32(input_ptr + x + 4), b),
vshlq_s32(vld1q_s32(input_ptr + x + 8), b),
vshlq_s32(vld1q_s32(input_ptr + x + 12), b)
}
};
vst1_s8(output_ptr + x, vmovn_s16(vcombine_s16(vmovn_s32(texels.val[0]), vmovn_s32(texels.val[1]))));
vst1_s8(output_ptr + x + 8, vmovn_s16(vcombine_s16(vmovn_s32(texels.val[2]), vmovn_s32(texels.val[3]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
break;
}
case DataType::QASYMM8:
case DataType::U8:
{
const int32x4_t b = vdupq_n_s32(-static_cast<int32_t>(_shift));
/* Down-conversion S32 -> U8 */
if(ConvertPolicy::SATURATE == _policy)
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x4_t texels =
{
{
vqshlq_s32(vld1q_s32(input_ptr + x), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 4), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 8), b),
vqshlq_s32(vld1q_s32(input_ptr + x + 12), b)
}
};
vst1_u8(output_ptr + x, vqmovn_u16(vcombine_u16(vqmovun_s32(texels.val[0]), vqmovun_s32(texels.val[1]))));
vst1_u8(output_ptr + x + 8, vqmovn_u16(vcombine_u16(vqmovun_s32(texels.val[2]), vqmovun_s32(texels.val[3]))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = utils::cast::saturate_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const int32_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int32x4x4_t texels =
{
{
vshlq_s32(vld1q_s32(input_ptr + x), b),
vshlq_s32(vld1q_s32(input_ptr + x + 4), b),
vshlq_s32(vld1q_s32(input_ptr + x + 8), b),
vshlq_s32(vld1q_s32(input_ptr + x + 12), b)
}
};
vst1_u8(output_ptr + x, vmovn_u16(vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(texels.val[0])), vmovn_u32(vreinterpretq_u32_s32(texels.val[1])))));
vst1_u8(output_ptr + x + 8, vmovn_u16(vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(texels.val[2])), vmovn_u32(vreinterpretq_u32_s32(texels.val[3])))));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<uint8_t>(*(input_ptr + x) >> _shift);
}
},
input, output);
}
break;
}
default:
ARM_COMPUTE_ERROR("Output data type not supported");
}
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
}