blob: de5a88e8129eb5691ecd56469fe754da8240e50b [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
const DirectConvolutionLayerOutputStageKernelInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::S32, DataType::F32);
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)));
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
}
if(input->data_type() == DataType::S32)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output == nullptr, "In-place computation not allowed for quantized output");
}
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
if(is_data_type_float(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
else if(input->data_type() == DataType::S32)
{
// In case of quantized computation and unconfigured output, the output data type must be provided through DirectConvolutionLayerOutputStageKernelInfo
ARM_COMPUTE_RETURN_ERROR_ON((info.output_data_type != DataType::QASYMM8) && (info.output_data_type != DataType::QASYMM8_SIGNED));
}
return Status{};
}
template <typename T>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
ARM_COMPUTE_UNUSED(result_shift);
ARM_COMPUTE_UNUSED(result_offset_after_shift);
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16 / input->info()->element_size();
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(input, win);
Iterator out(output, win);
execute_window_loop(win, [&](const Coordinates & id)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<const T *>(in.ptr()) + x;
auto v_in = wrapper::vloadq(in_ptr);
// Accumulate bias
if(has_bias)
{
const auto vb = wrapper::vdup_n(*reinterpret_cast<const T *>(bias->ptr_to_element(Coordinates(id.z()))), ExactTagType{});
v_in = wrapper::vadd(v_in, vb);
}
const auto out_ptr = reinterpret_cast<T *>(out.ptr()) + x;
wrapper::vstore(out_ptr, v_in);
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Get bias and pointer to input
auto s_in = *(reinterpret_cast<const T *>(in.ptr()) + x);
// Accumulate bias
if(has_bias)
{
const auto b = *reinterpret_cast<const T *>(bias->ptr_to_element(Coordinates(id.z())));
s_in += b;
}
*(reinterpret_cast<T *>(out.ptr()) + x) = s_in;
}
},
in, out);
}
template <typename T>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
{
ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
ARM_COMPUTE_UNUSED(result_shift);
ARM_COMPUTE_UNUSED(result_offset_after_shift);
Window window_bias = window;
window_bias.set(Window::DimX, Window::Dimension(0, 1, 1));
window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
window_bias.set(3, Window::Dimension(0, 0, 0));
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16 / input->info()->element_size();
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(input, win);
Iterator bi(bias, window_bias);
Iterator out(output, win);
execute_window_loop(win, [&](const Coordinates &)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<const T *>(in.ptr());
auto v_in = wrapper::vloadq(in_ptr + x);
// Accumulate bias
if(has_bias)
{
const auto bias_ptr = reinterpret_cast<T *>(bi.ptr()) + x;
v_in = wrapper::vadd(v_in, wrapper::vloadq(bias_ptr));
}
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
wrapper::vstore(out_ptr + x, v_in);
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Get bias and pointer to input
auto s_in = *(reinterpret_cast<const T *>(in.ptr()) + x);
// Accumulate bias
if(has_bias)
{
const auto bias_ptr = reinterpret_cast<T *>(bi.ptr()) + x;
s_in += *bias_ptr;
}
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
*(out_ptr + x) = s_in;
}
},
in, bi, out);
}
// Quantized case
template < typename TOut, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
{
using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
using TagType = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16 / input->info()->element_size();
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(input, win);
Iterator out(output, win);
execute_window_loop(win, [&](const Coordinates & id)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
int32x4x4_t v_in =
{
{
wrapper::vloadq(in_ptr),
wrapper::vloadq(in_ptr + 4),
wrapper::vloadq(in_ptr + 8),
wrapper::vloadq(in_ptr + 12)
}
};
// Accumulate bias
if(has_bias)
{
const auto vb = wrapper::vdup_n(*reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z()))), TagType{});
v_in =
{
{
wrapper::vadd(v_in.val[0], vb),
wrapper::vadd(v_in.val[1], vb),
wrapper::vadd(v_in.val[2], vb),
wrapper::vadd(v_in.val[3], vb)
}
};
}
const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32,
min, max, false));
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Get bias and pointer to input
int32_t s_in = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
// Accumulate bias
if(has_bias)
{
const auto b = *reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z())));
s_in += b;
}
const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
*out_ptr = finalize_quantization(s_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift,
std::numeric_limits<TOut>::lowest(), std::numeric_limits<TOut>::max(), false);
}
},
in, out);
}
template < typename TOut, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
{
using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
using TagType = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});
Window window_bias = window;
window_bias.set(Window::DimX, Window::Dimension(0, 1, 1));
window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
window_bias.set(3, Window::Dimension(0, 0, 0));
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16 / input->info()->element_size();
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(input, win);
Iterator bi(bias, window_bias);
Iterator out(output, win);
execute_window_loop(win, [&](const Coordinates &)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
int32x4x4_t v_in =
{
{
wrapper::vloadq(in_ptr),
wrapper::vloadq(in_ptr + 4),
wrapper::vloadq(in_ptr + 8),
wrapper::vloadq(in_ptr + 12),
}
};
// Accumulate bias
if(has_bias)
{
const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr()) + x;
wrapper::vadd(v_in.val[0], wrapper::vloadq(bias_ptr));
wrapper::vadd(v_in.val[1], wrapper::vloadq(bias_ptr + 4));
wrapper::vadd(v_in.val[2], wrapper::vloadq(bias_ptr + 8));
wrapper::vadd(v_in.val[3], wrapper::vloadq(bias_ptr + 12));
}
const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max, false));
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
int32_t s_in = *in_ptr;
// Accumulate bias
if(has_bias)
{
const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr()) + x;
s_in += *bias_ptr;
}
const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
*out_ptr = finalize_quantization(s_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift,
std::numeric_limits<TOut>::lowest(), std::numeric_limits<TOut>::max(), false);
}
},
in, bi, out);
}
} // namespace
NEDirectConvolutionLayerOutputStageKernel::NEDirectConvolutionLayerOutputStageKernel()
: _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0)
{
}
void NEDirectConvolutionLayerOutputStageKernel::configure(ITensor *input, const ITensor *bias, ITensor *output,
const DirectConvolutionLayerOutputStageKernelInfo &info)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(), info));
_func = nullptr;
_bias = bias;
_input = input;
_output = (output != nullptr) ? output : input;
_result_fixedpoint_multiplier = info.result_fixedpoint_multiplier;
_result_shift = info.result_shift;
_result_offset_after_shift = info.result_offset_after_shift;
// Auto-initialize output output if required
if(output != nullptr && output->info() != nullptr)
{
// Work out expected output data type
const DataType output_dt = (input->info()->data_type() == DataType::S32) ? info.output_data_type : DataType::S32;
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_dt));
}
Window win = calculate_max_window(*input->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(input->info()->num_dimensions());
if(output != nullptr && (output->info()->total_size() != 0))
{
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
}
else
{
input->info()->set_valid_region(ValidRegion(coord, input->info()->tensor_shape()));
}
INEKernel::configure(win);
const bool is_qasymm8_signed = (output != nullptr) ? is_data_type_quantized_asymmetric_signed(output->info()->data_type()) : false;
// Set appropriate function
if(input->info()->data_layout() == DataLayout::NCHW)
{
switch(input->info()->data_type())
{
case DataType::S32:
{
if(is_qasymm8_signed)
{
_func = &output_stage_nchw<int8_t>;
}
else
{
_func = &output_stage_nchw<uint8_t>;
}
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
_func = &output_stage_nchw<float16_t>;
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
_func = &output_stage_nchw<float>;
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
}
}
}
else
{
switch(input->info()->data_type())
{
case DataType::S32:
{
if(is_qasymm8_signed)
{
_func = &output_stage_nhwc<int8_t>;
}
else
{
_func = &output_stage_nhwc<uint8_t>;
}
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
_func = &output_stage_nhwc<float16_t>;
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
_func = &output_stage_nhwc<float>;
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
}
}
}
}
Status NEDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
const DirectConvolutionLayerOutputStageKernelInfo &info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, info));
return Status{};
}
void NEDirectConvolutionLayerOutputStageKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
const bool has_bias = _bias != nullptr;
(*_func)(_input, _bias, window, _output, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, has_bias);
}
} // namespace arm_compute