blob: 200ee6bf88d869db0cb220418ee7279a1549b5a9 [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEFFTDigitReverseKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <set>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(idx, 1, DataType::U32);
ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[config.axis] != idx->tensor_shape().x());
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 2);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
ARM_COMPUTE_UNUSED(idx, config);
auto_init_if_empty(*output, input->clone()->set_num_channels(2));
Window win = calculate_max_window(*input, Steps());
input->set_valid_region(ValidRegion(Coordinates(), input->tensor_shape()));
return std::make_pair(Status{}, win);
}
} // namespace
NEFFTDigitReverseKernel::NEFFTDigitReverseKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _idx(nullptr)
{
}
void NEFFTDigitReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *idx, const FFTDigitReverseKernelInfo &config)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, idx);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), idx->info(), config));
_input = input;
_output = output;
_idx = idx;
const size_t axis = config.axis;
const bool is_conj = config.conjugate;
const bool is_input_complex = (input->info()->num_channels() == 2);
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), idx->info(), config);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
if(axis == 0)
{
if(is_input_complex)
{
if(is_conj)
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, true>;
}
else
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, false>;
}
}
else
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<false, false>;
}
}
else if(axis == 1)
{
if(is_input_complex)
{
if(is_conj)
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, true>;
}
else
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, false>;
}
}
else
{
_func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<false, false>;
}
}
else
{
ARM_COMPUTE_ERROR("Not supported");
}
}
Status NEFFTDigitReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, idx, config));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), idx->clone().get(), config).first);
return Status{};
}
template <bool is_input_complex, bool is_conj>
void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0(const Window &window)
{
const size_t N = _input->info()->dimension(0);
// Copy the look-up buffer to a local array
std::vector<unsigned int> buffer_idx(N);
std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), N, buffer_idx.data());
// Input/output iterators
Window slice = window;
slice.set(0, Window::DimX);
Iterator in(_input, slice);
Iterator out(_output, slice);
// Row buffers
std::vector<float> buffer_row_out(2 * N);
std::vector<float> buffer_row_in(2 * N);
execute_window_loop(slice, [&](const Coordinates &)
{
if(is_input_complex)
{
// Load
memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), 2 * N * sizeof(float));
// Shuffle
for(size_t x = 0; x < 2 * N; x += 2)
{
size_t idx = buffer_idx[x / 2];
buffer_row_out[x] = buffer_row_in[2 * idx];
buffer_row_out[x + 1] = (is_conj ? -buffer_row_in[2 * idx + 1] : buffer_row_in[2 * idx + 1]);
}
}
else
{
// Load
memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), N * sizeof(float));
// Shuffle
for(size_t x = 0; x < N; ++x)
{
size_t idx = buffer_idx[x];
buffer_row_out[2 * x] = buffer_row_in[idx];
}
}
// Copy back
memcpy(reinterpret_cast<float *>(out.ptr()), buffer_row_out.data(), 2 * N * sizeof(float));
},
in, out);
}
template <bool is_input_complex, bool is_conj>
void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1(const Window &window)
{
const size_t Nx = _input->info()->dimension(0);
const size_t Ny = _input->info()->dimension(1);
// Copy the look-up buffer to a local array
std::vector<unsigned int> buffer_idx(Ny);
std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), Ny, buffer_idx.data());
// Output iterator
Window slice = window;
slice.set(0, Window::DimX);
Iterator out(_output, slice);
// Row buffer
std::vector<float> buffer_row(Nx);
// Strides
const size_t stride_z = _input->info()->strides_in_bytes()[2];
const size_t stride_w = _input->info()->strides_in_bytes()[3];
execute_window_loop(slice, [&](const Coordinates & id)
{
auto *out_ptr = reinterpret_cast<float *>(out.ptr());
auto *in_ptr = reinterpret_cast<float *>(_input->buffer() + id.z() * stride_z + id[3] * stride_w);
const size_t y_shuffled = buffer_idx[id.y()];
if(is_input_complex)
{
// Shuffle the entire row into the output
memcpy(out_ptr, in_ptr + 2 * Nx * y_shuffled, 2 * Nx * sizeof(float));
// Conjugate if necessary
if(is_conj)
{
for(size_t x = 0; x < 2 * Nx; x += 2)
{
out_ptr[x + 1] = -out_ptr[x + 1];
}
}
}
else
{
// Shuffle the entire row into the buffer
memcpy(buffer_row.data(), in_ptr + Nx * y_shuffled, Nx * sizeof(float));
// Copy the buffer to the output, with a zero imaginary part
for(size_t x = 0; x < 2 * Nx; x += 2)
{
out_ptr[x] = buffer_row[x / 2];
}
}
},
out);
}
void NEFFTDigitReverseKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_UNUSED(info);
(this->*_func)(window);
}
} // namespace arm_compute