blob: 174a06955f619967869fdd60a05a31986a90d308 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
int32_t a_offset, int32_t b_offset)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
TensorShape output_shape = mm_result->tensor_shape();
if(output_shape.num_dimensions() > 1)
{
const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
output_shape.collapse_from(output_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
"mm_result tensor must have the same number of batches of output tensor");
if(a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
}
return Status{};
}
void run_offset_contribution(const Window &window,
ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row,
int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col, bool is_gemm3d)
{
Window collapsed_window = window.collapse_if_possible(window, Window::DimZ);
collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1));
const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16;
Iterator mm_result_it(mm_result, collapsed_window);
if((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
// Offset in case vector_sum_col is batched
const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
// Compute the leftover term due to b_offset.
int32_t b_offset_term_s32 = *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input);
b_offset_term_s32 *= b_offset;
const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(vector_sum_col_ptr + x + 0),
vld1q_s32(vector_sum_col_ptr + x + 4),
vld1q_s32(vector_sum_col_ptr + x + 8),
vld1q_s32(vector_sum_col_ptr + x + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
// Add a_offset_term_s32 and b_offset_term_s32
int32x4x4_t offset_term_s32 =
{
{
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset)
}
};
offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec));
offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec));
offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec));
offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec));
int32x4x4_t in_s32 =
{
{
vld1q_s32(mm_result_ptr + x + 0),
vld1q_s32(mm_result_ptr + x + 4),
vld1q_s32(mm_result_ptr + x + 8),
vld1q_s32(mm_result_ptr + x + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
// Store the result with the offset contribution
vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Compute the leftover term due to a_offset.
int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
a_offset_term_s32 *= a_offset;
// Add the offset terms to GEMM's result
// Store the result with the offset contribution
mm_result_ptr[x] += k_offset + a_offset_term_s32 + b_offset_term_s32;
}
},
vector_sum_col_it, vector_sum_row_it, mm_result_it);
}
else if((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
// Set window for vector_sum_row
Window win_vector_sum_row(collapsed_window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
// Compute the leftover term due to b_offset.
int32_t b_offset_term_s32 = *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input);
b_offset_term_s32 *= b_offset;
const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(mm_result_ptr + x + 0),
vld1q_s32(mm_result_ptr + x + 4),
vld1q_s32(mm_result_ptr + x + 8),
vld1q_s32(mm_result_ptr + x + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32_vec);
in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32_vec);
in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32_vec);
in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32_vec);
// Store the result with the offset contribution
vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Add the offset terms to GEMM's result
// Store the result with the offset contribution
mm_result_ptr[x] += b_offset_term_s32;
}
},
vector_sum_row_it, mm_result_it);
}
else if((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false
{
// Set window for vector_sum_col
Window win_vector_sum_col(collapsed_window);
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
// Offset in case vector_sum_col is batched
const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Compute the leftover term due to a_offset.
int32x4x4_t a_offset_term_s32 =
{
{
vld1q_s32(vector_sum_col_ptr + x + 0),
vld1q_s32(vector_sum_col_ptr + x + 4),
vld1q_s32(vector_sum_col_ptr + x + 8),
vld1q_s32(vector_sum_col_ptr + x + 12)
}
};
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
int32x4x4_t in_s32 =
{
{
vld1q_s32(mm_result_ptr + x + 0),
vld1q_s32(mm_result_ptr + x + 4),
vld1q_s32(mm_result_ptr + x + 8),
vld1q_s32(mm_result_ptr + x + 12)
}
};
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);
// Store the result with the offset contribution
vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
}
// Left-overs loop
for(; x < window_end_x; ++x)
{
// Compute the leftover term due to a_offset.
const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
// Add the offset terms to GEMM's result
// Store the result with the offset contribution
mm_result_ptr[x] += a_offset_term_s32 * a_offset;
}
},
vector_sum_col_it, mm_result_it);
}
else // false, false
{
// No offset contribution from matrix A and matrix B
return;
}
}
} // namespace
NEGEMMLowpOffsetContributionKernel::NEGEMMLowpOffsetContributionKernel()
: _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true)
{
}
void NEGEMMLowpOffsetContributionKernel::configure(ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT
vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT
a_offset, b_offset)); // NOLINT
_vector_sum_col = vector_sum_col;
_vector_sum_row = vector_sum_row;
_mm_result = mm_result;
_a_offset = a_offset;
_b_offset = b_offset;
_k_offset = a_offset * b_offset * k;
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
// Check if vector_sum_col_shape should be slidden or not
// Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
_slide_vector_sum_col = vector_sum_col->info()->tensor_shape().num_dimensions() > 1;
}
// Configure kernel window
Window win = calculate_max_window(*mm_result->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(mm_result->info()->num_dimensions());
mm_result->info()->set_valid_region(ValidRegion(coord, mm_result->info()->tensor_shape()));
INEKernel::configure(win);
}
Status NEGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
int32_t a_offset, int32_t b_offset)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
return Status{};
}
void NEGEMMLowpOffsetContributionKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = _vector_sum_row != nullptr
&& _mm_result->info()->num_dimensions() > 1
&& _mm_result->info()->tensor_shape().y() != _vector_sum_row->info()->tensor_shape().x();
run_offset_contribution(window, _mm_result, _vector_sum_col, _vector_sum_row, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, reinterpret_as_3d);
}
} // namespace arm_compute