blob: 58c0acd4047fd049a7c534e73c262ebffa1985f2 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NENonLinearFilterKernel.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <algorithm>
#include <arm_neon.h>
#include <array>
#include <tuple>
#include <utility>
namespace arm_compute
{
namespace
{
const uint8x16_t zero_u8 = vdupq_n_u8(0);
template <size_t columns>
inline uint8x8_t min_row(uint8x16_t row_data)
{
uint8x8_t min = vget_low_u8(row_data);
for(size_t c = 1; c < columns; ++c)
{
row_data = vextq_u8(row_data, zero_u8, 1);
min = vmin_u8(min, vget_low_u8(row_data));
}
return min;
}
template <size_t columns>
inline uint8x8_t max_row(uint8x16_t row_data)
{
uint8x8_t max = vget_low_u8(row_data);
for(size_t c = 1; c < columns; ++c)
{
row_data = vextq_u8(row_data, zero_u8, 1);
max = vmax_u8(max, vget_low_u8(row_data));
}
return max;
}
inline void sort(uint8x8_t &a, uint8x8_t &b)
{
const uint8x8_t min = vmin_u8(a, b);
const uint8x8_t max = vmax_u8(a, b);
a = min;
b = max;
}
// Sorting networks below were generated using http://pages.ripco.net/~jgamble/nw.html
// Calculations that do not affect the median were removed.
inline void sort5(uint8x8_t &p0, uint8x8_t &p1, uint8x8_t &p2, uint8x8_t &p3, uint8x8_t &p4)
{
sort(p0, p1);
sort(p2, p3);
sort(p0, p2);
sort(p1, p3);
sort(p1, p2);
sort(p0, p4);
sort(p1, p4);
sort(p2, p4);
}
inline void sort9(uint8x8_t &p0, uint8x8_t &p1, uint8x8_t &p2,
uint8x8_t &p3, uint8x8_t &p4, uint8x8_t &p5,
uint8x8_t &p6, uint8x8_t &p7, uint8x8_t &p8)
{
sort(p1, p2);
sort(p4, p5);
sort(p7, p8);
sort(p0, p1);
sort(p3, p4);
sort(p6, p7);
sort(p1, p2);
sort(p4, p5);
sort(p7, p8);
sort(p0, p3);
sort(p5, p8);
sort(p4, p7);
sort(p3, p6);
sort(p1, p4);
sort(p2, p5);
sort(p4, p7);
sort(p4, p2);
sort(p6, p4);
sort(p4, p2);
}
inline void sort21(std::array<uint8x8_t, 21> &p)
{
sort(p[0], p[1]);
sort(p[2], p[3]);
sort(p[4], p[5]);
sort(p[6], p[7]);
sort(p[8], p[9]);
sort(p[10], p[11]);
sort(p[12], p[13]);
sort(p[14], p[15]);
sort(p[16], p[17]);
sort(p[18], p[19]);
sort(p[0], p[2]);
sort(p[1], p[3]);
sort(p[4], p[6]);
sort(p[5], p[7]);
sort(p[8], p[10]);
sort(p[9], p[11]);
sort(p[12], p[14]);
sort(p[13], p[15]);
sort(p[16], p[18]);
sort(p[17], p[19]);
sort(p[1], p[2]);
sort(p[5], p[6]);
sort(p[0], p[4]);
sort(p[3], p[7]);
sort(p[9], p[10]);
sort(p[13], p[14]);
sort(p[8], p[12]);
sort(p[11], p[15]);
sort(p[17], p[18]);
sort(p[16], p[20]);
sort(p[1], p[5]);
sort(p[2], p[6]);
sort(p[9], p[13]);
sort(p[10], p[14]);
sort(p[0], p[8]);
sort(p[7], p[15]);
sort(p[17], p[20]);
sort(p[1], p[4]);
sort(p[3], p[6]);
sort(p[9], p[12]);
sort(p[11], p[14]);
sort(p[18], p[20]);
sort(p[0], p[16]);
sort(p[2], p[4]);
sort(p[3], p[5]);
sort(p[10], p[12]);
sort(p[11], p[13]);
sort(p[1], p[9]);
sort(p[6], p[14]);
sort(p[19], p[20]);
sort(p[3], p[4]);
sort(p[11], p[12]);
sort(p[1], p[8]);
sort(p[2], p[10]);
sort(p[5], p[13]);
sort(p[7], p[14]);
sort(p[3], p[11]);
sort(p[2], p[8]);
sort(p[4], p[12]);
sort(p[7], p[13]);
sort(p[1], p[17]);
sort(p[3], p[10]);
sort(p[5], p[12]);
sort(p[1], p[16]);
sort(p[2], p[18]);
sort(p[3], p[9]);
sort(p[6], p[12]);
sort(p[2], p[16]);
sort(p[3], p[8]);
sort(p[7], p[12]);
sort(p[5], p[9]);
sort(p[6], p[10]);
sort(p[4], p[8]);
sort(p[7], p[11]);
sort(p[3], p[19]);
sort(p[5], p[8]);
sort(p[7], p[10]);
sort(p[3], p[18]);
sort(p[4], p[20]);
sort(p[6], p[8]);
sort(p[7], p[9]);
sort(p[3], p[17]);
sort(p[5], p[20]);
sort(p[7], p[8]);
sort(p[3], p[16]);
sort(p[6], p[20]);
sort(p[5], p[17]);
sort(p[7], p[20]);
sort(p[4], p[16]);
sort(p[6], p[18]);
sort(p[5], p[16]);
sort(p[7], p[19]);
sort(p[7], p[18]);
sort(p[6], p[16]);
sort(p[7], p[17]);
sort(p[10], p[18]);
sort(p[7], p[16]);
sort(p[9], p[17]);
sort(p[8], p[16]);
sort(p[9], p[16]);
sort(p[10], p[16]);
}
inline void sort25(std::array<uint8x8_t, 25> &p)
{
sort(p[1], p[2]);
sort(p[0], p[1]);
sort(p[1], p[2]);
sort(p[4], p[5]);
sort(p[3], p[4]);
sort(p[4], p[5]);
sort(p[0], p[3]);
sort(p[2], p[5]);
sort(p[2], p[3]);
sort(p[1], p[4]);
sort(p[1], p[2]);
sort(p[3], p[4]);
sort(p[7], p[8]);
sort(p[6], p[7]);
sort(p[7], p[8]);
sort(p[10], p[11]);
sort(p[9], p[10]);
sort(p[10], p[11]);
sort(p[6], p[9]);
sort(p[8], p[11]);
sort(p[8], p[9]);
sort(p[7], p[10]);
sort(p[7], p[8]);
sort(p[9], p[10]);
sort(p[0], p[6]);
sort(p[4], p[10]);
sort(p[4], p[6]);
sort(p[2], p[8]);
sort(p[2], p[4]);
sort(p[6], p[8]);
sort(p[1], p[7]);
sort(p[5], p[11]);
sort(p[5], p[7]);
sort(p[3], p[9]);
sort(p[3], p[5]);
sort(p[7], p[9]);
sort(p[1], p[2]);
sort(p[3], p[4]);
sort(p[5], p[6]);
sort(p[7], p[8]);
sort(p[9], p[10]);
sort(p[13], p[14]);
sort(p[12], p[13]);
sort(p[13], p[14]);
sort(p[16], p[17]);
sort(p[15], p[16]);
sort(p[16], p[17]);
sort(p[12], p[15]);
sort(p[14], p[17]);
sort(p[14], p[15]);
sort(p[13], p[16]);
sort(p[13], p[14]);
sort(p[15], p[16]);
sort(p[19], p[20]);
sort(p[18], p[19]);
sort(p[19], p[20]);
sort(p[21], p[22]);
sort(p[23], p[24]);
sort(p[21], p[23]);
sort(p[22], p[24]);
sort(p[22], p[23]);
sort(p[18], p[21]);
sort(p[20], p[23]);
sort(p[20], p[21]);
sort(p[19], p[22]);
sort(p[22], p[24]);
sort(p[19], p[20]);
sort(p[21], p[22]);
sort(p[23], p[24]);
sort(p[12], p[18]);
sort(p[16], p[22]);
sort(p[16], p[18]);
sort(p[14], p[20]);
sort(p[20], p[24]);
sort(p[14], p[16]);
sort(p[18], p[20]);
sort(p[22], p[24]);
sort(p[13], p[19]);
sort(p[17], p[23]);
sort(p[17], p[19]);
sort(p[15], p[21]);
sort(p[15], p[17]);
sort(p[19], p[21]);
sort(p[13], p[14]);
sort(p[15], p[16]);
sort(p[17], p[18]);
sort(p[19], p[20]);
sort(p[21], p[22]);
sort(p[23], p[24]);
sort(p[0], p[12]);
sort(p[8], p[20]);
sort(p[8], p[12]);
sort(p[4], p[16]);
sort(p[16], p[24]);
sort(p[12], p[16]);
sort(p[2], p[14]);
sort(p[10], p[22]);
sort(p[10], p[14]);
sort(p[6], p[18]);
sort(p[6], p[10]);
sort(p[10], p[12]);
sort(p[1], p[13]);
sort(p[9], p[21]);
sort(p[9], p[13]);
sort(p[5], p[17]);
sort(p[13], p[17]);
sort(p[3], p[15]);
sort(p[11], p[23]);
sort(p[11], p[15]);
sort(p[7], p[19]);
sort(p[7], p[11]);
sort(p[11], p[13]);
sort(p[11], p[12]);
}
} // namespace
NENonLinearFilterKernel::NENonLinearFilterKernel()
: _border_width(0), _input(nullptr), _output(nullptr), _mask(nullptr), _pattern(MatrixPattern::BOX), _function(NonLinearFilterFunction::MIN), _func_idx(0), _border_size()
{
}
BorderSize NENonLinearFilterKernel::border_size() const
{
return _border_size;
}
void NENonLinearFilterKernel::configure(const ITensor *input, ITensor *output, NonLinearFilterFunction function, unsigned int mask_size, MatrixPattern pattern, const uint8_t *mask,
bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON(3 != mask_size && 5 != mask_size);
ARM_COMPUTE_ERROR_ON(MatrixPattern::OTHER == pattern && nullptr == mask);
// Set class variables
_border_size = BorderSize(mask_size / 2);
_input = input;
_output = output;
_mask = mask;
_pattern = pattern;
_function = function;
// Configure kernel window
const unsigned int num_elems_processed_per_iteration = (MatrixPattern::OTHER == pattern) ? 1 : 8;
constexpr unsigned int num_elems_read_per_iteration = 16;
Window win = calculate_max_window(*input->info(), num_elems_processed_per_iteration, border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input->info(), -border_size().left, -border_size().top, num_elems_read_per_iteration, mask_size),
output_access);
output_access.set_valid_region(win, input->info()->valid_region(), border_undefined, border_size());
INEKernel::configure(win);
// Define function index
_func_idx = (3 == mask_size) ? 0 : 1;
if(MatrixPattern::OTHER != pattern)
{
_func_idx = (_func_idx) * 3 + static_cast<unsigned int>(function);
}
}
void NENonLinearFilterKernel::fill_mask(uint8_t *mask, int cols, int rows, MatrixPattern pattern)
{
unsigned int v = 0;
for(int r = 0; r < rows; ++r)
{
for(int c = 0; c < cols; ++c, ++v)
{
uint8_t val = 0;
switch(pattern)
{
case MatrixPattern::BOX:
val = 255;
break;
case MatrixPattern::CROSS:
val = ((r == (rows / 2)) || (c == (cols / 2))) ? 255 : 0;
break;
case MatrixPattern::DISK:
val = (((r - rows / 2.0f + 0.5f) * (r - rows / 2.0f + 0.5f)) / ((rows / 2.0f) * (rows / 2.0f)) + ((c - cols / 2.0f + 0.5f) * (c - cols / 2.0f + 0.5f)) / ((cols / 2.0f) *
(cols / 2.0f))) <= 1.0f ? 255 : 0;
break;
default:
return;
}
mask[v] = val;
}
}
}
template <>
void NENonLinearFilterKernel::median_filter_box<3, 3>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-1, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-1, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-1, 1)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x16_t top_data = vld1q_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x16_t bot_data = vld1q_u8(input_bot_ptr + input.offset());
uint8x8_t p0 = vget_low_u8(top_data);
uint8x8_t p1 = vext_u8(vget_low_u8(top_data), vget_high_u8(top_data), 1);
uint8x8_t p2 = vext_u8(vget_low_u8(top_data), vget_high_u8(top_data), 2);
uint8x8_t p3 = vget_low_u8(mid_data);
uint8x8_t p4 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 1);
uint8x8_t p5 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 2);
uint8x8_t p6 = vget_low_u8(bot_data);
uint8x8_t p7 = vext_u8(vget_low_u8(bot_data), vget_high_u8(bot_data), 1);
uint8x8_t p8 = vext_u8(vget_low_u8(bot_data), vget_high_u8(bot_data), 2);
sort9(p0, p1, p2, p3, p4, p5, p6, p7, p8);
vst1_u8(output.ptr(), p4);
},
input, output);
}
template <>
void NENonLinearFilterKernel::median_filter_box<5, 5>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
const auto input_top2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -2)));
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 1)));
const auto input_bot2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 2)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x16_t top2_data = vld1q_u8(input_top2_ptr + input.offset());
const uint8x16_t top_data = vld1q_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x16_t bot_data = vld1q_u8(input_bot_ptr + input.offset());
const uint8x16_t bot2_data = vld1q_u8(input_bot2_ptr + input.offset());
const std::array<uint8x8_t, 10> d =
{
vget_low_u8(top2_data),
vget_high_u8(top2_data),
vget_low_u8(top_data),
vget_high_u8(top_data),
vget_low_u8(mid_data),
vget_high_u8(mid_data),
vget_low_u8(bot_data),
vget_high_u8(bot_data),
vget_low_u8(bot2_data),
vget_high_u8(bot2_data)
};
std::array<uint8x8_t, 25> p{ 0 };
for(unsigned int i = 0; i < 5; ++i)
{
const unsigned int idx_d = i * 2;
const unsigned int idx_p = i * 5;
p[idx_p] = d[idx_d];
p[idx_p + 1] = vext_u8(d[idx_d], d[idx_d + 1], 1);
p[idx_p + 2] = vext_u8(d[idx_d], d[idx_d + 1], 2);
p[idx_p + 3] = vext_u8(d[idx_d], d[idx_d + 1], 3);
p[idx_p + 4] = vext_u8(d[idx_d], d[idx_d + 1], 4);
}
sort25(p);
vst1_u8(output.ptr(), p[12]);
},
input, output);
}
template <int mask_w, int mask_h>
void NENonLinearFilterKernel::min_filter_box(const Window &win)
{
static_assert(mask_w > 0, "Mask size must not be 0");
static_assert(mask_h > 0, "Mask size must not be 0");
Iterator input(_input, win);
Iterator output(_output, win);
const int k_row_half = mask_h / 2;
const int k_col_half = mask_w / 2;
// Set row pointers
std::array<const unsigned char *, mask_h> input_ptrs{ {} };
for(int i = -k_row_half; i <= k_row_half; ++i)
{
input_ptrs[k_row_half + i] = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(-k_col_half, i));
}
execute_window_loop(win, [&](const Coordinates &)
{
// Get min of rows
uint8x16_t rows_min = vld1q_u8(input_ptrs[0] + input.offset());
for(unsigned int r = 1; r < mask_h; ++r)
{
const uint8x16_t data = vld1q_u8(input_ptrs[r] + input.offset());
rows_min = vminq_u8(rows_min, data);
}
const uint8x8_t out = min_row<mask_w>(rows_min);
// Store result as U8
vst1_u8(output.ptr(), out);
},
input, output);
}
template <int mask_w, int mask_h>
void NENonLinearFilterKernel::max_filter_box(const Window &win)
{
static_assert(mask_w > 0, "Mask size must not be 0");
static_assert(mask_h > 0, "Mask size must not be 0");
ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
Iterator input(_input, win);
Iterator output(_output, win);
const int k_row_half = mask_h / 2;
const int k_col_half = mask_w / 2;
// Set row pointers
std::array<const unsigned char *, mask_h> input_ptrs{ {} };
for(int i = -k_row_half; i <= k_row_half; ++i)
{
input_ptrs[k_row_half + i] = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(-k_col_half, i));
}
execute_window_loop(win, [&](const Coordinates &)
{
uint8x16_t rows_max = vld1q_u8(input_ptrs[0] + input.offset());
// Get max of rows
for(unsigned int r = 1; r < mask_h; ++r)
{
const uint8x16_t data = vld1q_u8(input_ptrs[r] + input.offset());
rows_max = vmaxq_u8(rows_max, data);
}
// Get max of columns
const uint8x8_t out = max_row<mask_w>(rows_max);
// Store result as U8
vst1_u8(output.ptr(), out);
},
input, output);
}
template <>
void NENonLinearFilterKernel::median_filter_cross<3, 3>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-1, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, 1)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x8_t top_data = vld1_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x8_t bot_data = vld1_u8(input_bot_ptr + input.offset());
uint8x8_t p0 = top_data;
uint8x8_t p1 = vget_low_u8(mid_data);
uint8x8_t p2 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 1);
uint8x8_t p3 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 2);
uint8x8_t p4 = bot_data;
sort5(p0, p1, p2, p3, p4);
vst1_u8(output.ptr(), p2);
},
input, output);
}
template <>
void NENonLinearFilterKernel::median_filter_cross<5, 5>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
const auto input_top2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, -2)));
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, 1)));
const auto input_bot2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(0, 2)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x8_t top2_data = vld1_u8(input_top2_ptr + input.offset());
const uint8x8_t top_data = vld1_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x8_t bot_data = vld1_u8(input_bot_ptr + input.offset());
const uint8x8_t bot2_data = vld1_u8(input_bot2_ptr + input.offset());
uint8x8_t p0 = top2_data;
uint8x8_t p1 = top_data;
uint8x8_t p2 = vget_low_u8(mid_data);
uint8x8_t p3 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 1);
uint8x8_t p4 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 2);
uint8x8_t p5 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 3);
uint8x8_t p6 = vext_u8(vget_low_u8(mid_data), vget_high_u8(mid_data), 4);
uint8x8_t p7 = bot_data;
uint8x8_t p8 = bot2_data;
sort9(p0, p1, p2, p3, p4, p5, p6, p7, p8);
vst1_u8(output.ptr(), p4);
},
input, output);
}
template <int mask_w, int mask_h>
void NENonLinearFilterKernel::min_filter_cross(const Window &win)
{
static_assert(mask_w > 0, "Mask size must not be 0");
static_assert(mask_h > 0, "Mask size must not be 0");
ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
Iterator input(_input, win);
Iterator output(_output, win);
const int k_row_half = mask_h / 2;
const int k_col_half = mask_w / 2;
const unsigned char *mid_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(-k_col_half, 0));
// Set row pointers
std::array<const unsigned char *, mask_h> input_ptrs{ {} };
for(int i = -k_row_half; i <= k_row_half; ++i)
{
input_ptrs[k_row_half + i] = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, i));
}
execute_window_loop(win, [&](const Coordinates &)
{
uint8x8_t rows_min = vld1_u8(input_ptrs[0] + input.offset());
// Get min of rows
for(unsigned int r = 1; r < mask_h; ++r)
{
const uint8x8_t data = vld1_u8(input_ptrs[r] + input.offset());
rows_min = vmin_u8(rows_min, data);
}
// Get min of middle row
const uint8x16_t data = vld1q_u8(mid_ptr + input.offset());
uint8x8_t out = min_row<mask_w>(data);
// Get final min
out = vmin_u8(out, rows_min);
// Store result as U8
vst1_u8(output.ptr(), out);
},
input, output);
}
template <int mask_w, int mask_h>
void NENonLinearFilterKernel::max_filter_cross(const Window &win)
{
static_assert(mask_w > 0, "Mask size must not be 0");
static_assert(mask_h > 0, "Mask size must not be 0");
ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
Iterator input(_input, win);
Iterator output(_output, win);
const int k_row_half = mask_h / 2;
const int k_col_half = mask_w / 2;
const unsigned char *mid_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(-k_col_half, 0));
// Set row pointers
std::array<unsigned char *, mask_h> input_ptrs{ {} };
for(int i = -k_row_half; i <= k_row_half; ++i)
{
input_ptrs[k_row_half + i] = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, i));
}
execute_window_loop(win, [&](const Coordinates &)
{
uint8x8_t rows_max = vld1_u8(input_ptrs[0] + input.offset());
// Get max of rows
for(unsigned int r = 1; r < mask_h; ++r)
{
const uint8x8_t data = vld1_u8(input_ptrs[r] + input.offset());
rows_max = vmax_u8(rows_max, data);
}
// Get max of middle row
const uint8x16_t data = vld1q_u8(mid_ptr + input.offset());
uint8x8_t out = max_row<mask_w>(data);
// Get final max
out = vmax_u8(out, rows_max);
// Store result as U8
vst1_u8(output.ptr(), out);
},
input, output);
}
template <>
void NENonLinearFilterKernel::median_filter_disk<5, 5>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
static const uint8x16_t zero = vdupq_n_u8(0);
const auto input_top2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -2)));
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 1)));
const auto input_bot2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 2)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x16_t top2_data = vextq_u8(vld1q_u8(input_top2_ptr + input.offset()), zero, 1);
const uint8x16_t top_data = vld1q_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x16_t bot_data = vld1q_u8(input_bot_ptr + input.offset());
const uint8x16_t bot2_data = vextq_u8(vld1q_u8(input_bot2_ptr + input.offset()), zero, 1);
std::array<uint8x8_t, 10> d =
{
vget_low_u8(top2_data),
vget_high_u8(top2_data),
vget_low_u8(top_data),
vget_high_u8(top_data),
vget_low_u8(mid_data),
vget_high_u8(mid_data),
vget_low_u8(bot_data),
vget_high_u8(bot_data),
vget_low_u8(bot2_data),
vget_high_u8(bot2_data)
};
std::array<uint8x8_t, 21> p{ 0 };
p[0] = d[0];
p[1] = vext_u8(d[0], d[1], 1);
p[2] = vext_u8(d[0], d[1], 2);
p[18] = d[8];
p[19] = vext_u8(d[8], d[9], 1);
p[20] = vext_u8(d[8], d[9], 2);
for(unsigned int i = 0; i < 3; ++i)
{
const unsigned int idx_d = 2 + i * 2;
const unsigned int idx_p = 3 + i * 5;
p[idx_p] = d[idx_d];
p[idx_p + 1] = vext_u8(d[idx_d], d[idx_d + 1], 1);
p[idx_p + 2] = vext_u8(d[idx_d], d[idx_d + 1], 2);
p[idx_p + 3] = vext_u8(d[idx_d], d[idx_d + 1], 3);
p[idx_p + 4] = vext_u8(d[idx_d], d[idx_d + 1], 4);
}
sort21(p);
vst1_u8(output.ptr(), p[10]);
},
input, output);
}
template <>
void NENonLinearFilterKernel::min_filter_disk<5, 5>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
static const uint8x16_t zero = vdupq_n_u8(0);
const auto input_top2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -2)));
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 1)));
const auto input_bot2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 2)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x16_t top2_data = vextq_u8(vld1q_u8(input_top2_ptr + input.offset()), zero, 1);
const uint8x16_t top_data = vld1q_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x16_t bot_data = vld1q_u8(input_bot_ptr + input.offset());
const uint8x16_t bot2_data = vextq_u8(vld1q_u8(input_bot2_ptr + input.offset()), zero, 1);
const uint8x16_t rows_min_3 = vminq_u8(top2_data, bot2_data);
uint8x16_t rows_min_5 = vminq_u8(top_data, bot_data);
rows_min_5 = vminq_u8(rows_min_5, mid_data);
const uint8x8_t out_3 = min_row<3>(rows_min_3);
const uint8x8_t out_5 = min_row<5>(rows_min_5);
vst1_u8(output.ptr(), vmin_u8(out_3, out_5));
},
input, output);
}
template <>
void NENonLinearFilterKernel::max_filter_disk<5, 5>(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
static const uint8x16_t zero = vdupq_n_u8(0);
const auto input_top2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -2)));
const auto input_top_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, -1)));
const auto input_mid_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 0)));
const auto input_bot_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 1)));
const auto input_bot2_ptr = static_cast<const unsigned char *>(_input->ptr_to_element(Coordinates(-2, 2)));
execute_window_loop(win, [&](const Coordinates &)
{
const uint8x16_t top2_data = vextq_u8(vld1q_u8(input_top2_ptr + input.offset()), zero, 1);
const uint8x16_t top_data = vld1q_u8(input_top_ptr + input.offset());
const uint8x16_t mid_data = vld1q_u8(input_mid_ptr + input.offset());
const uint8x16_t bot_data = vld1q_u8(input_bot_ptr + input.offset());
const uint8x16_t bot2_data = vextq_u8(vld1q_u8(input_bot2_ptr + input.offset()), zero, 1);
const uint8x16_t rows_max_3 = vmaxq_u8(top2_data, bot2_data);
uint8x16_t rows_max_5 = vmaxq_u8(top_data, bot_data);
rows_max_5 = vmaxq_u8(rows_max_5, mid_data);
const uint8x8_t out_3 = max_row<3>(rows_max_3);
const uint8x8_t out_5 = max_row<5>(rows_max_5);
vst1_u8(output.ptr(), vmax_u8(out_3, out_5));
},
input, output);
}
template <int mask_w, int mask_h>
void NENonLinearFilterKernel::non_linear_filter_generic(const Window &win)
{
Iterator input(_input, win);
Iterator output(_output, win);
ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
const int k_row_half = mask_h / 2;
const int k_col_half = mask_w / 2;
constexpr int mask_size = mask_w * mask_h;
// Set row pointers
std::array<unsigned char *, mask_h> input_ptrs{ {} };
for(int i = -k_row_half; i <= k_row_half; ++i)
{
input_ptrs[k_row_half + i] = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(-k_col_half, i));
}
std::array<uint8_t, mask_size> vals{ {} };
execute_window_loop(win, [&](const Coordinates &)
{
// Clear array
std::fill(std::begin(vals), std::end(vals), 0);
size_t v = 0;
size_t m = 0;
for(unsigned int r = 0; r < mask_h; ++r)
{
const auto in_ptr = static_cast<const uint8_t *>(input_ptrs[r] + input.offset());
for(unsigned int c = 0; c < mask_w; ++c, ++m)
{
if(_mask[m] == 255)
{
vals[v] = in_ptr[c];
++v;
}
}
}
// Only do something if there is at least one non-zero element in the
// mask
if(v > 0)
{
std::sort(vals.begin(), vals.begin() + v);
switch(_function)
{
case NonLinearFilterFunction::MIN:
*output.ptr() = vals[0];
break;
case NonLinearFilterFunction::MAX:
*output.ptr() = vals[v - 1];
break;
case NonLinearFilterFunction::MEDIAN:
*output.ptr() = vals[v / 2];
break;
default:
break;
}
}
},
input, output);
}
void NENonLinearFilterKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
using NonLinearFilterFunction = void (NENonLinearFilterKernel::*)(const Window & window);
// Function table for BOX pattern
static const std::array<NonLinearFilterFunction, 6> func_table_box =
{
{
&NENonLinearFilterKernel::median_filter_box<3, 3>,
&NENonLinearFilterKernel::min_filter_box<3, 3>,
&NENonLinearFilterKernel::max_filter_box<3, 3>,
&NENonLinearFilterKernel::median_filter_box<5, 5>,
&NENonLinearFilterKernel::min_filter_box<5, 5>,
&NENonLinearFilterKernel::max_filter_box<5, 5>,
}
};
// Function table for CROSS pattern
static const std::array<NonLinearFilterFunction, 6> func_table_cross =
{
{
&NENonLinearFilterKernel::median_filter_cross<3, 3>,
&NENonLinearFilterKernel::min_filter_cross<3, 3>,
&NENonLinearFilterKernel::max_filter_cross<3, 3>,
&NENonLinearFilterKernel::median_filter_cross<5, 5>,
&NENonLinearFilterKernel::min_filter_cross<5, 5>,
&NENonLinearFilterKernel::max_filter_cross<5, 5>,
}
};
// Function table for DISK pattern
static const std::array<NonLinearFilterFunction, 6> func_table_disk =
{
{
&NENonLinearFilterKernel::median_filter_box<3, 3>,
&NENonLinearFilterKernel::min_filter_box<3, 3>,
&NENonLinearFilterKernel::max_filter_box<3, 3>,
&NENonLinearFilterKernel::median_filter_disk<5, 5>,
&NENonLinearFilterKernel::min_filter_disk<5, 5>,
&NENonLinearFilterKernel::max_filter_disk<5, 5>,
}
};
// Function table for OTHER pattern
static const std::array<NonLinearFilterFunction, 2> func_table_generic =
{
{
&NENonLinearFilterKernel::non_linear_filter_generic<3, 3>,
&NENonLinearFilterKernel::non_linear_filter_generic<5, 5>,
}
};
switch(_pattern)
{
case MatrixPattern::BOX:
ARM_COMPUTE_ERROR_ON(_func_idx >= func_table_box.size());
(this->*func_table_box[_func_idx])(window);
break;
case MatrixPattern::CROSS:
ARM_COMPUTE_ERROR_ON(_func_idx >= func_table_cross.size());
(this->*func_table_cross[_func_idx])(window);
break;
case MatrixPattern::DISK:
ARM_COMPUTE_ERROR_ON(_func_idx >= func_table_disk.size());
(this->*func_table_disk[_func_idx])(window);
break;
case MatrixPattern::OTHER:
default:
ARM_COMPUTE_ERROR_ON(_func_idx >= func_table_generic.size());
(this->*func_table_generic[_func_idx])(window);
break;
}
}
} // namespace arm_compute