blob: 0f0b9eed5abdf20d4c9a4bc8ca5e9b0092651499 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEPoolingLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/ToolchainSupport.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <algorithm>
#include <arm_neon.h>
#include <cmath>
#include <limits>
#include <set>
#include <string>
#include <tuple>
namespace arm_compute
{
using namespace misc::shape_calculator;
namespace
{
template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
return quantize_qasymm8_signed(val, info);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
return quantize_qasymm8(val, info);
}
inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
int start_x = id[idx_width] * stride_x - pad_x;
int start_y = id[idx_height] * stride_y - pad_y;
const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
if(exclude_padding)
{
start_x = std::max(0, start_x);
start_y = std::max(0, start_y);
}
return 1.f / ((end_y - start_y) * (end_x - start_x));
}
template <typename T, typename TVec>
inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
const int pool_size, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
int start_x = (id.x() + id_offset) * stride_x - pad_x;
int start_y = id.y() * stride_y - pad_y;
const int end_y = std::min(start_y + pool_size, upper_bound_h);
if(exclude_padding)
{
start_y = std::max(0, start_y);
}
std::array<T, 8> elems =
{
{
wrapper::vgetlane(v, 0),
wrapper::vgetlane(v, 1),
wrapper::vgetlane(v, 2),
wrapper::vgetlane(v, 3),
wrapper::vgetlane(v, 4),
wrapper::vgetlane(v, 5),
wrapper::vgetlane(v, 6),
wrapper::vgetlane(v, 7),
}
};
for(auto &el : elems)
{
int c_start_x = start_x;
const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
if(exclude_padding)
{
c_start_x = std::max(0, c_start_x);
}
float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
el *= scale;
start_x += step * stride_x;
}
v = wrapper::vsetlane(elems[0], v, 0);
v = wrapper::vsetlane(elems[1], v, 1);
v = wrapper::vsetlane(elems[2], v, 2);
v = wrapper::vsetlane(elems[3], v, 3);
v = wrapper::vsetlane(elems[4], v, 4);
v = wrapper::vsetlane(elems[5], v, 5);
v = wrapper::vsetlane(elems[6], v, 6);
v = wrapper::vsetlane(elems[7], v, 7);
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info,
unsigned int &pooled_w, unsigned int pooled_h, const ITensorInfo *indices, Size2D pool_size)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
int pool_stride_x = 0;
int pool_stride_y = 0;
PoolingType pool_type = pool_info.pool_type;
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
if(indices)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
}
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(input->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding()
&& (input->data_layout() == DataLayout::NHWC),
"exclude_padding equal false is not supported for AVG Pooling with padding on quantized types");
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
|| (output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
if(indices)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
ARM_COMPUTE_RETURN_ERROR_ON((indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
|| (indices->dimension(get_data_layout_dimension_index(indices->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
}
}
return Status{};
}
Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y)
{
ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0);
ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0);
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *indices, const PoolingLayerInfo &pool_info,
unsigned int &num_elems_processed_per_iteration,
BorderSize &border_size,
unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y)
{
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, pool_info)));
if(indices)
{
// Indices auto inizialitation if not yet initialized
auto_init_if_empty(*indices, (input->clone()->set_tensor_shape(compute_pool_shape(*input,
pool_info)))
.set_data_type(DataType::U32) /* we store the offset to the element */);
}
const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
unsigned int num_elems_read_per_iteration = 0;
unsigned int num_elems_horizontal_window = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int input_width = input->dimension(idx_width);
const int input_height = input->dimension(idx_height);
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
const int pool_pad_right = pad_stride_info.pad_right();
const int pool_pad_top = pad_stride_info.pad_top();
const int pool_pad_left = pad_stride_info.pad_left();
const int pool_pad_bottom = pad_stride_info.pad_bottom();
const bool is_square = pool_size_x == pool_size_y;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
input->dimension(idx_height),
pool_size_x,
pool_size_y,
pad_stride_info);
//If it's not squared and optimized will be executed the MxN
num_elems_read_per_iteration = 1;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
if(is_square)
{
switch(input->data_type())
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
switch(pool_size_x)
{
case 2:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
case 3:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
default:
break;
}
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
switch(pool_size_x)
{
case 2:
case 3:
num_elems_read_per_iteration = 4;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
break;
}
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
switch(pool_size_x)
{
case 2:
num_elems_read_per_iteration = 2;
break;
case 3:
num_elems_read_per_iteration = 4; // We use vload4 for pooling3
break;
case 7:
num_elems_read_per_iteration = 8; // We use vload8 for pooling7
break;
default:
break;
}
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
bool window_changed = false;
Window win{};
if(data_layout == DataLayout::NCHW)
{
// Number of iterations in X dimension
const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
// Upper limit for the number of right/bottom border elements that are accessed
const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height;
border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
border_size.right = std::max(upper_bound_w, pool_pad_right);
border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
AccessWindowStatic input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom);
AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window);
if(indices)
{
AccessWindowHorizontal indices_access(indices, 0, num_elems_horizontal_window);
window_changed = update_window_and_padding(win, input_access, output_access, indices_access);
}
else
{
window_changed = update_window_and_padding(win, input_access, output_access);
}
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
template <typename T>
inline T vcvtq_q32_f32(float32x4_t values);
template <>
inline uint32x4_t vcvtq_q32_f32(float32x4_t values)
{
return vcvtq_u32_f32(values);
}
template <>
inline int32x4_t vcvtq_q32_f32(float32x4_t values)
{
return vcvtq_s32_f32(values);
}
template <typename T>
inline float32x4_t vcvtq_f32_q32(T values);
template <>
inline float32x4_t vcvtq_f32_q32(uint32x4_t values)
{
return vcvtq_f32_u32(values);
}
template <>
inline float32x4_t vcvtq_f32_q32(int32x4_t values)
{
return vcvtq_f32_s32(values);
}
template <typename Tout>
inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset);
template <>
inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
{
const float new_scale = quant_rescale / scale_pooling;
return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset));
}
template <>
inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
{
const float new_scale = quant_rescale / scale_pooling;
return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset));
}
template <typename Tin, typename Tout>
inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo);
template <>
inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
{
const float32x4x4_t acc =
{
{
vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))),
vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))),
vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))),
vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))),
}
};
return vquantize(acc, requant_qinfo);
}
template <>
inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
{
const float32x4x4_t acc =
{
{
vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))),
vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))),
vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))),
vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))),
}
};
return vquantize_signed(acc, requant_qinfo);
}
template <typename T>
inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo);
template <>
inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
{
const float32x4x2_t acc =
{
{
vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))),
vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))),
}
};
return vquantize(acc, requant_qinfo);
}
template <>
inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
{
const float32x4x2_t acc =
{
{
vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))),
vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))),
}
};
return vquantize_signed(acc, requant_qinfo);
}
} // namespace
NEPoolingLayerKernel::NEPoolingLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _indices(nullptr), _pool_info(), _data_layout(DataLayout::UNKNOWN), _num_elems_processed_per_iteration(0), _border_size(0), _is_square(false)
{
}
BorderSize NEPoolingLayerKernel::border_size() const
{
return _border_size;
}
void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info, ITensor *indices)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
const bool is_global_pooling = pool_info.is_global_pooling;
const int pool_stride_x = pad_stride_info.stride().first;
// Get data layout
const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : pool_info.data_layout;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Update pool size in case of global pooling
const Size2D pool_size(
is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size.width,
is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size.height);
// Validate pool info before calling scaled_dimensions
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y()));
// Check output dimensions
unsigned int pooled_w;
unsigned int pooled_h;
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(idx_width),
input->info()->dimension(idx_height),
pool_size.x(),
pool_size.y(),
pad_stride_info);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h, (indices) ? indices->info() : nullptr, pool_size));
// Set instance variables
_input = input;
_output = output;
_indices = indices;
_pool_info = pool_info;
_data_layout = input->info()->data_layout();
_is_square = (pool_size.x() == pool_size.y());
// Get data type
const DataType data_type = input->info()->data_type();
const bool is_nchw = _data_layout == DataLayout::NCHW;
if(data_type == DataType::QASYMM8)
{
if(!is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<uint8_t>;
}
else
{
if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
{
_func = &NEPoolingLayerKernel::pooling2_q8_nchw<uint8_t>;
}
else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
{
_func = &NEPoolingLayerKernel::pooling3_q8_nchw<uint8_t>;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<uint8_t>;
}
}
}
else if(data_type == DataType::QASYMM8_SIGNED)
{
if(!is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_q8_nhwc<int8_t>;
}
else
{
if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
{
_func = &NEPoolingLayerKernel::pooling2_q8_nchw<int8_t>;
}
else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
{
_func = &NEPoolingLayerKernel::pooling3_q8_nchw<int8_t>;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_q8_nchw<int8_t>;
}
}
}
else if(data_type == DataType::F16)
{
if(!is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
}
else
{
if(_is_square)
{
switch(pool_size.x())
{
case 2:
{
_func = &NEPoolingLayerKernel::pooling2_f16_nchw;
}
break;
case 3:
{
_func = &NEPoolingLayerKernel::pooling3_f16_nchw;
}
break;
default:
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
break;
}
}
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
}
}
}
else if(data_type == DataType::F32)
{
if(!is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
else
{
if(_is_square)
{
switch(pool_size.x())
{
case 2:
{
_func = &NEPoolingLayerKernel::pooling2_f32_nchw;
break;
}
case 3:
{
_func = &NEPoolingLayerKernel::pooling3_f32_nchw;
break;
}
case 7:
{
_func = &NEPoolingLayerKernel::pooling7_f32_nchw;
break;
}
default:
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
break;
}
}
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
}
}
}
if(!is_nchw)
{
// Configure kernel window
Window win = calculate_max_window(*output->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
INEKernel::configure(win);
}
else
{
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), (indices) ? indices->info() : nullptr,
pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
}
template <typename T>
inline uint32_t offset_no_padding(uint32_t padded_offset, const Coordinates &id, const ITensorInfo &info, int pool_stride_x, int pool_stride_y)
{
const int pad_left = info.padding().left;
const int pad_right = info.padding().right;
const int pad_top = info.padding().top;
const int pad_bottom = info.padding().bottom;
const int in_stride_y = static_cast<int>(info.strides_in_bytes().y());
const int in_stride_w = static_cast<int>(info.strides_in_bytes()[3]);
const int pad_horiz = pad_left + pad_right;
const int pad_vert = pad_top + pad_bottom;
if(info.data_layout() == DataLayout::NCHW)
{
const uint32_t offset_base = padded_offset
- sizeof(T) * pad_horiz * id.y() * pool_stride_y /* subtract padding elems per row */
- pad_top * sizeof(T) /* top padding */
- sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() - pad_vert * in_stride_y * id.z() /* for each Z plane there are height*pad_right padding elems */
- in_stride_w * id[3];
return offset_base;
}
else
{
const uint32_t offset_base = padded_offset
- sizeof(T) * pad_horiz * id.y() * pool_stride_x // subtract padding elems per row
- pad_top * sizeof(T) // top padding
- sizeof(T) * pad_horiz * info.tensor_shape()[1] * id.z() * pool_stride_y // for each Z plane there are width*pad_right padding elems
- in_stride_w * id[3];
return offset_base;
}
}
template <typename T>
void NEPoolingLayerKernel::pooling2_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
/** NEON vector types */
using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
using q16_t = typename wrapper::traits::promote_t<T>;
using q16x4_t = typename wrapper::traits::neon_vector<q16_t, 4>::type;
using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
constexpr int pool_size = 2;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const T *const input_top_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
const bool have_different_qinfo = input_qinfo != output_qinfo;
const float requant_scale = output_qinfo.scale / input_qinfo.scale;
const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = wrapper::vloadq(input_top_ptr + input.offset());
const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
q8x8_t lower_res = {};
q8x8_t upper_res = {};
if(pooling_type != PoolingType::MAX)
{
const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
// Add rows
const q16x8x2_t vrsum =
{
{
wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
}
};
// Pair-wise add row data
const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
// Scale lower result
scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_lower, id, 0, scale_step_x,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
lower_res = wrapper::vmovn(res_lower);
// Compute upper result for stride_x == 1
if(pool_stride_x == 1)
{
// Shifted row sum
const q16x8x2_t vrsum_shifted =
{
{
wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
wrapper::vext_1(vrsum.val[1], vrsum.val[1])
}
};
// Pair-wise add shifted row
q16x8_t res_upper = wrapper::vcombine(
wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));
// Scale upper result
scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res_upper, id, 1, 2,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
upper_res = wrapper::vmovn(res_upper);
}
}
else
{
const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
if(pool_stride_x == 1)
{
const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
}
}
if(have_different_qinfo)
{
const auto requantized_output = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
lower_res = wrapper::vgetlow(requantized_output);
upper_res = wrapper::vgethigh(requantized_output);
}
// Store result
if(pool_stride_x == 1)
{
const q8x8x2_t res = { { lower_res, upper_res } };
wrapper::vstore(reinterpret_cast<T *>(output.ptr()), res);
}
else
{
wrapper::vstore(reinterpret_cast<T *>(output.ptr()), lower_res);
}
},
input, output);
}
void NEPoolingLayerKernel::pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(input_middle_ptr + input.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
middle_data = vmul_f16(middle_data, middle_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
// Perform pooling
const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
res = vmul_f16(vpadd_f16(res, res), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
res = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
res = vpmax_f16(res, res);
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
*(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <typename T>
inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
f16_to_f32(float16x4_t input)
{
float32x2_t output = { static_cast<float>(vget_lane_f16(input, 0)), static_cast<float>(vget_lane_f16(input, 1)) };
return output;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T>
inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
f16_to_f32(float32x2_t input)
{
return input;
}
template <typename T>
void NEPoolingLayerKernel::pooling2_nchw_maxpool_indices(const Window &window_input, const Window &window)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
Iterator indices(_indices, window);
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const int pad_left = _input->info()->padding().left;
const int pad_right = _input->info()->padding().right;
const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
execute_window_loop(window, [&](const Coordinates & id)
{
auto top_data = wrapper::vload(reinterpret_cast<const T *>(input_top_ptr + input.offset()));
auto bottom_data = wrapper::vload(reinterpret_cast<const T *>(input_bottom_ptr + input.offset()));
float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
// Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
*(reinterpret_cast<T *>(output.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
// Calculate max data indice, which will be used in max unpool.
const uint32_t offset_base = offset_no_padding<T>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
const uint32x2_t voffset_top = { offset_top, offset_top + 1u };
const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u };
const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
*(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
},
input, output, indices);
}
void NEPoolingLayerKernel::pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
if(pooling_type == PoolingType::MAX && _indices)
{
pooling2_nchw_maxpool_indices<float16_t>(window_input, window);
}
else
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x, pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(top_data, bottom_data);
res = vpmax_f16(max_data, max_data);
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
// Store result
*(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
},
input, output);
}
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
template <typename T>
void NEPoolingLayerKernel::pooling3_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
/** NEON vector types */
using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
using q16_t = typename wrapper::traits::promote_t<T>;
using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
constexpr int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
const float requant_scale = output_qinfo.scale / input_qinfo.scale;
const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
const T *const input_top_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
const T *const input_middle_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
const T *const input_bottom_ptr = reinterpret_cast<const T *>(_input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = wrapper::vloadq(input_top_ptr + input.offset());
const auto middle_data = wrapper::vloadq(input_middle_ptr + input.offset());
const auto bottom_data = wrapper::vloadq(input_bottom_ptr + input.offset());
q8x8_t fres = {};
q8x16_t fqres = {};
if(pooling_type == PoolingType::AVG)
{
// Convert data to u16
const q16x8x2_t top_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };
// Calculate row sums
const q16x8x2_t vrsum =
{
{
wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
}
};
const q16x8x2_t vrsum_shifted_1 =
{
{
wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
wrapper::vext_1(vrsum.val[1], vrsum.val[1])
}
};
const q16x8x2_t vrsum_shifted_2 =
{
{
wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
wrapper::vext_2(vrsum.val[1], vrsum.val[1])
}
};
// Calculate final sum
q16x8x2_t final_sum =
{
{
wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
}
};
if(pool_stride_x == 2)
{
q16x8_t res =
{
wrapper::vgetlane(final_sum.val[0], 0),
wrapper::vgetlane(final_sum.val[0], 2),
wrapper::vgetlane(final_sum.val[0], 4),
wrapper::vgetlane(final_sum.val[0], 6),
wrapper::vgetlane(final_sum.val[1], 0),
wrapper::vgetlane(final_sum.val[1], 2),
wrapper::vgetlane(final_sum.val[1], 4),
wrapper::vgetlane(final_sum.val[1], 6),
};
scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, res, id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
fres = wrapper::vmovn(res);
}
else
{
// Scale lower result
scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[0], id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Scale lower result
scale_vector_q16x8<q16_t, q16x8_t>(exclude_padding, final_sum.val[1], id, 8, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
}
}
else
{
const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
if(pool_stride_x == 2)
{
const q8x8x2_t table = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
fres = wrapper::vtbl(table, lookup_val);
}
else
{
fqres = final_max;
}
}
// Store result
if(pool_stride_x == 1)
{
if(input_qinfo != output_qinfo)
{
fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
}
wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fqres);
}
else
{
if(input_qinfo != output_qinfo)
{
fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
}
wrapper::vstore(reinterpret_cast<T *>(output.ptr()), fres);
}
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float16_t res = 0.0f;
float16x8_t vres = vdupq_n_f16(0.0f);
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
(y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vaddq_f16(vres, vmulq_f16(data, data));
}
else
{
vres = vaddq_f16(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
// Reduction
float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
res += vget_lane_f16(tmp, 0);
res += vget_lane_f16(tmp, 1);
res += vget_lane_f16(tmp, 2);
res += vget_lane_f16(tmp, 3);
// Divide by scale
res *= scale;
}
else
{
float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) +
(y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
vres = vmaxq_f16(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().y())));
res = std::max(res, data);
}
}
float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
res = std::max(res, vget_lane_f16(tmp, 0));
res = std::max(res, vget_lane_f16(tmp, 1));
res = std::max(res, vget_lane_f16(tmp, 2));
res = std::max(res, vget_lane_f16(tmp, 3));
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float16_t *>(output.ptr())) = res;
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void NEPoolingLayerKernel::pooling2_f16_nhwc_maxpool_indices(const Window &window_input, const Window &window)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 8;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_out);
Iterator indices(_indices, window_out);
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int pad_right = _input->info()->padding().right;
const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
execute_window_loop(window_out, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
const auto in_x0_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off;
const auto in_x1_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off;
const auto in_x2_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off;
const auto in_x3_ptr = reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off;
const auto v_x0 = vld1q_f16(in_x0_ptr);
const auto v_x1 = vld1q_f16(in_x1_ptr);
const auto v_x2 = vld1q_f16(in_x2_ptr);
const auto v_x3 = vld1q_f16(in_x3_ptr);
float16x8_t vres = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
// Store result
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
const uint32_t offset_base = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
const uint32x4_t voffset_x0_0 = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
const uint32x4_t voffset_x0_1 = { offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7 };
const uint16x8_t voffset_x0 = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
const uint32x4_t voffset_x1_0 = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
const uint32x4_t voffset_x1_1 = { offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7 };
const uint16x8_t voffset_x1 = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
const uint32x4_t voffset_x2_0 = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
const uint32x4_t voffset_x2_1 = { offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7 };
const uint16x8_t voffset_x2 = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
const uint32x4_t voffset_x3_0 = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
const uint32x4_t voffset_x3_1 = { offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7 };
const uint16x8_t voffset_x3 = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
const uint16x8_t tmp_indices2 = vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
// Store indicies
vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
const auto x0 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x0_offset) + x_off);
const auto x1 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x1_offset) + x_off);
const auto x2 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x2_offset) + x_off);
const auto x3 = *(reinterpret_cast<const float16_t *>(input.ptr() + in_x3_offset) + x_off);
float16_t res = std::max(std::max(x2, x3), std::max(x0, x1));
// Store result
*(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
const uint32_t offset_base = offset_no_padding<float16_t>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float16_t) + x_off;
const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_right;
const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) - pad_right * _input->info()->tensor_shape()[1];
const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_right;
const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
// Store indices
*(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
}
},
input, output, indices);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
void NEPoolingLayerKernel::poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
{
pooling2_f16_nhwc_maxpool_indices(window_input, window);
}
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 8;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_out);
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
float16x8_t vres;
execute_window_loop(window_out, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x8_t scale_v = vdupq_n_f16(scale);
// Perform pooling
vres = vdupq_n_f16(0.0f);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vaddq_f16(vres, vmulq_f16(data, data));
}
else
{
vres = vaddq_f16(vres, data);
}
}
}
// Divide by scale
vres = vmulq_f16(vres, scale_v);
}
else
{
vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(_input->info()->strides_in_bytes().z())) + x_off);
vres = vmaxq_f16(vres, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
}
// Store result
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()) + x_off, vres);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
float16_t res = 0.0f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float16_t scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
res += data * data;
}
else
{
res += data;
}
}
}
// Divide by scale
res *= scale;
}
else
{
res = std::numeric_limits<float>::lowest();
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
res = std::max(res, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float16_t *>(output.ptr()) + x_off) = res;
}
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
void NEPoolingLayerKernel::poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float res = 0.0f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
float32x4_t vres = vdupq_n_f32(0.0f);
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res += vaddvq_f32(vres);
#else // __aarch64__
// Reduction
float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpadd_f32(tmp, tmp);
res += vget_lane_f32(tmp, 0);
#endif // __aarch64__
// Divide by scale
res *= scale;
}
else
{
float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
vres = vmaxq_f32(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
res = std::max(res, data);
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res = std::max(vmaxvq_f32(vres), res);
#else // __aarch64__
float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpmax_f32(tmp, tmp);
res = std::max(res, vget_lane_f32(tmp, 0));
#endif // __aarch64__
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = res;
},
input, output);
}
void NEPoolingLayerKernel::pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type,
bool exclude_padding)
{
if(pooling_type == PoolingType::MAX && _indices)
{
pooling2_nchw_maxpool_indices<float>(window_input, window);
}
else
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto in_top_ptr = reinterpret_cast<const float *>(input_top_ptr + input.offset());
const auto in_bottom_ptr = reinterpret_cast<const float *>(input_bottom_ptr + input.offset());
float32x2_t top_data = vld1_f32(in_top_ptr);
float32x2_t bottom_data = vld1_f32(in_bottom_ptr);
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f32(top_data, top_data);
bottom_data = vmul_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
}
else
{
const float32x2_t max_data = vmax_f32(top_data, bottom_data);
res = vpmax_f32(max_data, max_data);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
}
void NEPoolingLayerKernel::pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x4_t top_data = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmulq_f32(top_data, top_data);
middle_data = vmulq_f32(middle_data, middle_data);
bottom_data = vmulq_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
void NEPoolingLayerKernel::pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 7;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
std::array<const uint8_t *, pool_size> input_ptrs{ {} };
for(int i = 0; i < pool_size; ++i)
{
input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t res = {};
float final_res = 0.f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
for(int i = 1; i < pool_size; ++i)
{
data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
sum_data = vaddq_f32(sum_data, data.val[0]);
sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
}
res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
for(int i = 1; i < pool_size; ++i)
{
const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
max_data = vmax2q_f32(max_data, data);
}
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
if(_pool_info.pool_size == Size2D(2, 2) && pooling_type == PoolingType::MAX && _indices)
{
pooling2_f32_nhwc_maxpool_indices(window_input, window);
}
else
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 4;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_out);
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
float32x4_t vres;
execute_window_loop(window_out, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x4_t scale_v = vdupq_n_f32(scale);
// Perform pooling
vres = vdupq_n_f32(0.0f);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
}
// Divide by scale
vres = vmulq_f32(vres, scale_v);
}
else
{
vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
vres = vmaxq_f32(vres, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
float32x4_t l2_res = { static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))
};
vres = l2_res;
}
// Store result
vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
float res = 0.0f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
res += data * data;
}
else
{
res += data;
}
}
}
// Divide by scale
res *= scale;
}
else
{
res = std::numeric_limits<float>::lowest();
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
res = std::max(res, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
}
},
input, output);
}
}
void NEPoolingLayerKernel::pooling2_f32_nhwc_maxpool_indices(const Window &window_input, const Window &window)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 4;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_out);
Iterator indices(_indices, window_out);
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
float32x4_t vres;
float res;
const int pad_right = _input->info()->padding().right;
const int in_stride_y = static_cast<int>(_input->info()->strides_in_bytes().y());
const int in_stride_z = static_cast<int>(_input->info()->strides_in_bytes().z());
execute_window_loop(window_out, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int in_x0_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x1_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x2_offset = (pool_start_x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
const int in_x3_offset = (pool_start_x + 1 - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (pool_start_y + 1 - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z());
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
const auto in_x0_ptr = reinterpret_cast<const float *>(input.ptr() + in_x0_offset);
const auto in_x1_ptr = reinterpret_cast<const float *>(input.ptr() + in_x1_offset);
const auto in_x2_ptr = reinterpret_cast<const float *>(input.ptr() + in_x2_offset);
const auto in_x3_ptr = reinterpret_cast<const float *>(input.ptr() + in_x3_offset);
const auto v_x0 = vld1q_f32(in_x0_ptr + x_off);
const auto v_x1 = vld1q_f32(in_x1_ptr + x_off);
const auto v_x2 = vld1q_f32(in_x2_ptr + x_off);
const auto v_x3 = vld1q_f32(in_x3_ptr + x_off);
vres = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
// Store result
vst1q_f32(reinterpret_cast<float *>(output.ptr()) + x_off, vres);
const uint32_t offset_base = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float) + x_off;
const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
const uint32x4_t voffset_x0 = { offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3 };
const uint32x4_t voffset_x1 = { offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3 };
const uint32x4_t voffset_x2 = { offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3 };
const uint32x4_t voffset_x3 = { offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3 };
const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
const uint32x4_t tmp_indices2 = vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
// Store indices
vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
const auto x0 = *(reinterpret_cast<const float *>(input.ptr() + in_x0_offset) + x_off);
const auto x1 = *(reinterpret_cast<const float *>(input.ptr() + in_x1_offset) + x_off);
const auto x2 = *(reinterpret_cast<const float *>(input.ptr() + in_x2_offset) + x_off);
const auto x3 = *(reinterpret_cast<const float *>(input.ptr() + in_x3_offset) + x_off);
res = std::max(std::max(x2, x3), std::max(x0, x1));
// Store result
*(reinterpret_cast<float *>(output.ptr()) + x_off) = res;
const uint32_t offset_base = offset_no_padding<float>(input.offset(), id, *_input->info(), pool_stride_x, pool_stride_y);
const uint32_t offset_x0 = (uint32_t)offset_base / sizeof(float) + x_off;
const uint32_t offset_x1 = (uint32_t)offset_x0 + in_stride_y / sizeof(float) - pad_right;
const uint32_t offset_x2 = (uint32_t)offset_x0 + in_stride_z / sizeof(float) - pad_right * _input->info()->tensor_shape()[1];
const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float) - pad_right;
const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
// Store indices
*(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
}
},
input, output, indices);
}
template <typename T>
void NEPoolingLayerKernel::poolingMxN_q8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
/** NEON vector types */
using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
using q16_t = typename wrapper::traits::promote_t<T>;
using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
using q32_t = typename wrapper::traits::promote_t<q16_t>;
using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().x() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
execute_window_loop(window, [&](const Coordinates & id)
{
T res = std::numeric_limits<T>::min();
if(pooling_type != PoolingType::MAX)
{
q32x4_t vres = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
q32_t sres = 0;
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
const q16x8_t data_q16 = wrapper::vmovl(data);
vres = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16)));
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
sres += data;
}
}
// Reduction
const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres));
sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1);
// Divide by scale
res = static_cast<T>(support::cpp11::round(sres * scale));
}
else
{
q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
vres = wrapper::vmax(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().y())));
res = std::max(res, data);
}
}
// Reduce max
vres = wrapper::vpmax(vres, vres);
vres = wrapper::vpmax(vres, vres);
vres = wrapper::vpmax(vres, vres);
// Get max value
res = std::max(res, wrapper::vgetlane(vres, 0));
}
// Store result
res = (input_qinfo != output_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, input_qinfo), output_qinfo) : res;
*(reinterpret_cast<T *>(output.ptr())) = res;
},
input, output);
}
template <typename T>
void NEPoolingLayerKernel::poolingMxN_q8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 16;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_out);
using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
using q16_t = typename wrapper::traits::promote_t<T>;
using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
using q32_t = typename wrapper::traits::promote_t<q16_t>;
using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
const int pool_size_x = _pool_info.is_global_pooling ? _input->info()->tensor_shape().y() : _pool_info.pool_size.width;
const int pool_size_y = _pool_info.is_global_pooling ? _input->info()->tensor_shape().z() : _pool_info.pool_size.height;
const int pool_pad_right = _pool_info.pad_stride_info.pad_right();
const int pool_pad_top = _pool_info.pad_stride_info.pad_top();
const int pool_pad_left = _pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
const float32x4_t half_scale_v = vdupq_n_f32(0.5f);
const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
const float quant_rescale = output_qinfo.scale / input_qinfo.scale;
// "new_offset" doesn't have to consider the "half_scale_v" in its computation
// With a requantization performed in a single step there won't be uncertainties introduced
const int32_t new_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / quant_rescale);
const float requant_scale = output_qinfo.scale / input_qinfo.scale;
const int32_t requant_offset = output_qinfo.offset - static_cast<int32_t>(static_cast<float>(input_qinfo.offset) / requant_scale);
const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
execute_window_loop(window_out, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
int x_off = window_start_x;
for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
if(pooling_type != PoolingType::MAX)
{
q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
// Perform pooling
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data));
const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
}
}
if(input_qinfo != output_qinfo)
{
const float32x4x4_t vres =
{
{
vcvtq_f32_q32(vres1),
vcvtq_f32_q32(vres2),
vcvtq_f32_q32(vres3),
vcvtq_f32_q32(vres4),
}
};
const auto requantized_output = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
// Store result
wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, wrapper::vgetlow(requantized_output));
wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, wrapper::vgethigh(requantized_output));
}
else
{
const float32x4_t scale_v = vdupq_n_f32(scale);
// Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
// Store result
wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, res1);
wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off + 8, res2);
}
}
else
{
q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
vres = wrapper::vmax(vres, data);
}
}
// Store result
wrapper::vstore(reinterpret_cast<T *>(output.ptr()) + x_off, (input_qinfo != output_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
requant_qinfo) :
vres);
}
}
// Left-overs loop
for(; x_off < window_end_x; ++x_off)
{
if(pooling_type != PoolingType::MAX)
{
q32_t res = static_cast<q32_t>(0.f);
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
// Perform pooling
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
res += data;
}
}
if(input_qinfo != output_qinfo)
{
const float res_f = static_cast<float>(res);
const float new_scale = quant_rescale / scale;
const auto requantized_output = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
// Store result
*(reinterpret_cast<T *>(output.ptr()) + x_off) = requantized_output;
}
else
{
// Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
// Store result
*(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
}
}
else
{
T res = std::numeric_limits<T>::min();
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const T data = *(reinterpret_cast<const T *>(input.ptr() + (x - pool_pad_left) * static_cast<int>(_input->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
(_input->info()->strides_in_bytes().z())) + x_off);
res = std::max(res, data);
}
}
// Store result
if(input_qinfo != output_qinfo)
{
const float res_f = static_cast<float>(res);
*(reinterpret_cast<T *>(output.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
}
else
{
*(reinterpret_cast<T *>(output.ptr()) + x_off) = res;
}
}
}
},
input, output);
}
Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
unsigned int num_elems_processed_per_iteration = 0;
BorderSize border_size(0);
const bool is_global_pooling = pool_info.is_global_pooling;
unsigned int pool_size_x = 0;
unsigned int pool_size_y = 0;
// Get data layout
const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? input->data_layout() : pool_info.data_layout;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
pool_size_x = is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size.width;
pool_size_y = is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size.height;
// Validate pool info before calling scaled_dimensions
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y));
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
input->dimension(idx_height),
pool_size_x,
pool_size_y,
pool_info.pad_stride_info);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h, indices, Size2D(pool_size_x, pool_size_y)));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(),
(indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h,
pool_size_x, pool_size_y)
.first);
return Status{};
}
void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
const unsigned int pool_stride_x = _pool_info.pad_stride_info.stride().first;
const unsigned int pool_stride_y = _pool_info.pad_stride_info.stride().second;
const unsigned int pool_size = _pool_info.pool_size.width;
const bool exclude_padding = _pool_info.exclude_padding;
Window window_input(window);
if(_data_layout == DataLayout::NCHW)
{
// Set step for input in x and y direction for the input
unsigned int window_x_inc = 0;
switch(_input->info()->data_type())
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
{
window_x_inc = pool_stride_x;
if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
{
window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
}
break;
}
case DataType::F16:
case DataType::F32:
{
window_x_inc = pool_stride_x;
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
}
else
{
window_input.set(Window::DimX, Window::Dimension(0, 1, 1));
window_input.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x));
window_input.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y));
}
// Run function
(this->*_func)(window_input, window, _pool_info.pool_type, exclude_padding);
}
} // namespace arm_compute