blob: 9cf9b98a0c37a2d1a15f56a2dd4d4c04a5b98fd4 [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NESelectKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "utils/TypePrinter.h"
#include <arm_neon.h>
#include <map>
#include <string>
namespace arm_compute
{
namespace
{
template <typename ScalarType, typename VectorType>
void select_op(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
const int window_step_x, const int window_start_x, const int window_end_x, const int limit, VectorType (*condition_conversion)(const uint8_t *))
{
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator condition(cond, win);
Iterator input1(in1, win);
Iterator input2(in2, win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
const auto condition_ptr = reinterpret_cast<const uint8_t *>(condition.ptr());
const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
int x = window_start_x;
for(; x <= limit; x += window_step_x)
{
const auto c = (*condition_conversion)(condition_ptr + x);
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
wrapper::vstore(output_ptr + x, wrapper::vbsl(c, a, b));
}
for(; x < window_end_x; ++x)
{
const auto c = *(condition_ptr + x);
const auto a = *(input1_ptr + x);
const auto b = *(input2_ptr + x);
*(output_ptr + x) = static_cast<bool>(c) ? a : b;
}
},
condition, input1, input2, output);
}
template <typename ScalarType, typename VectorType>
void select_op_8(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
const auto window_step_x = 16 / sizeof(ScalarType);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
{
static const auto zero = wrapper::vdup_n(static_cast<uint8_t>(0), arm_compute::wrapper::traits::vector_128_tag());
return wrapper::vcgt(wrapper::vloadq(condition_ptr), zero);
});
}
template <typename ScalarType, typename VectorType>
void select_op_16(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
const auto window_step_x = 16 / sizeof(ScalarType);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
{
static const auto zero = wrapper::vdup_n(static_cast<uint16_t>(0), arm_compute::wrapper::traits::vector_128_tag());
return wrapper::vcgt(wrapper::vmovl(wrapper::vload(condition_ptr)), zero);
});
}
template <typename ScalarType, typename VectorType>
void select_op_32(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
const auto window_step_x = 16 / sizeof(ScalarType);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
{
static const auto zero = wrapper::vdup_n(static_cast<uint32_t>(0), arm_compute::wrapper::traits::vector_128_tag());
return wrapper::vcgt(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vload(condition_ptr)))), zero);
});
}
template <typename ScalarType>
void select_op_not_same_rank(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
ARM_COMPUTE_UNUSED(window);
auto output_ptr = reinterpret_cast<ScalarType *>(out->buffer());
const auto condition_ptr = reinterpret_cast<const uint8_t *>(cond->buffer());
const auto input1_ptr = reinterpret_cast<const ScalarType *>(in1->buffer());
const auto input2_ptr = reinterpret_cast<const ScalarType *>(in2->buffer());
const int outer_size = cond->info()->total_size() / cond->info()->element_size();
const int inner_size = (in1->info()->total_size() / in1->info()->element_size()) / outer_size;
int offset = 0;
const int step = 16 / in1->info()->element_size();
for(int i = 0; i < outer_size; ++i)
{
int x = offset;
const auto input_ptr = static_cast<bool>(*(condition_ptr + i)) ? input1_ptr : input2_ptr;
for(; x <= offset + inner_size - step; x += step)
{
wrapper::vstore(output_ptr + x, wrapper::vloadq(input_ptr + x));
}
if(x <= offset + inner_size - (step / 2))
{
wrapper::vstore(output_ptr + x, wrapper::vload(input_ptr + x));
x += step / 2;
}
for(; x < offset + inner_size; ++x)
{
*(output_ptr + x) = *(input_ptr + x);
}
offset += inner_size;
}
}
} // namespace
NESelectKernel::NESelectKernel()
: _function(nullptr), _c(nullptr), _x(nullptr), _y(nullptr), _output(nullptr), _has_same_rank(false)
{
}
void NESelectKernel::configure(const ITensor *c, const ITensor *x, const ITensor *y, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(c, x, y, output);
// Auto initialize output if not initialized
auto_init_if_empty(*output->info(), x->info()->tensor_shape(), 1, x->info()->data_type());
ARM_COMPUTE_ERROR_THROW_ON(validate(c->info(), x->info(), y->info(), output->info()));
_c = c;
_x = x;
_y = y;
_output = output;
_has_same_rank = (c->info()->tensor_shape().num_dimensions() == x->info()->tensor_shape().num_dimensions());
std::string function_to_call("op_");
function_to_call += string_from_data_type(x->info()->data_type());
static std::map<std::string, SelectFunction *> map_function;
if(_has_same_rank)
{
map_function =
{
{ "op_S8", &select_op_8<int8_t, uint8x16_t> },
{ "op_S16", &select_op_16<int16_t, uint16x8_t> },
{ "op_S32", &select_op_32<int32_t, uint32x4_t> },
{ "op_U8", &select_op_8<uint8_t, uint8x16_t> },
{ "op_U16", &select_op_16<uint16_t, uint16x8_t> },
{ "op_U32", &select_op_32<uint32_t, uint32x4_t> },
{ "op_F32", &select_op_32<float, uint32x4_t> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
map_function["op_F16"] = &select_op_16<float16_t, uint16x8_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
else
{
map_function =
{
{ "op_S8", &select_op_not_same_rank<int8_t> },
{ "op_S16", &select_op_not_same_rank<int16_t> },
{ "op_S32", &select_op_not_same_rank<int32_t> },
{ "op_U8", &select_op_not_same_rank<uint8_t> },
{ "op_U16", &select_op_not_same_rank<uint16_t> },
{ "op_U32", &select_op_not_same_rank<uint32_t> },
{ "op_F32", &select_op_not_same_rank<float> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
map_function["op_F16"] = &select_op_not_same_rank<float16_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
auto it = map_function.find(function_to_call);
if(it != map_function.end())
{
_function = it->second;
}
Window win = calculate_max_window(x->info()->valid_region());
INEKernel::configure(win);
}
Status NESelectKernel::validate(const ITensorInfo *c, const ITensorInfo *x, const ITensorInfo *y, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(c, x, y);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(x);
ARM_COMPUTE_RETURN_ERROR_ON(x->data_type() == DataType::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(x, y);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(x, y);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(c, 1, DataType::U8);
const bool is_same_rank = (c->tensor_shape().num_dimensions() == x->tensor_shape().num_dimensions());
ARM_COMPUTE_RETURN_ERROR_ON(is_same_rank && (x->tensor_shape() != c->tensor_shape()));
ARM_COMPUTE_RETURN_ERROR_ON(!is_same_rank && ((c->tensor_shape().num_dimensions() > 1) || (c->tensor_shape().x() != x->tensor_shape()[x->tensor_shape().num_dimensions() - 1])));
if(output != nullptr && output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(x, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(x, output);
}
return Status{};
}
void NESelectKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_function == nullptr);
_function(_c, _x, _y, _output, window);
}
} // namespace arm_compute