blob: 97797cefdea43395774857c4e905304c244ac6af [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/SaturateCast.h"
#include <algorithm>
#include <arm_neon.h>
#include <cfloat>
#include <functional>
namespace arm_compute
{
template <typename float_vec_type, typename int_vec_type>
int_vec_type convert_float_to_int(const float_vec_type &in);
template <typename float_vec_type, typename int_vec_type>
float_vec_type convert_int_to_float(const int_vec_type &in);
template <>
uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
{
uint8x16_t out;
convert_float32x4x4_to_uint8x16(in, out);
return out;
}
template <>
int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
{
int8x16_t out;
convert_float32x4x4_to_int8x16(in, out);
return out;
}
template <>
float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
{
return convert_uint8x16_to_float32x4x4(in);
}
template <>
float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
{
return convert_int8x16_to_float32x4x4(in);
}
namespace
{
Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
// Validate in case of configured output
if(output.total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1));
}
return Status{};
}
template <typename T>
void logits_1d_max(const ITensor &in, ITensor &out, const Window &window)
{
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
constexpr int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win{ window };
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(&in, win);
Iterator output(&out, win);
const int sum_stages = log2(window_step_x / 2);
execute_window_loop(win, [&](const Coordinates &)
{
// Get pointers
const auto in_ptr = reinterpret_cast<const T *>(input.ptr());
const auto out_ptr = reinterpret_cast<T *>(output.ptr());
// Init max value
auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto current_value = wrapper::vloadq(in_ptr + x);
vec_max = wrapper::vmax(vec_max, current_value);
}
auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max));
for(int i = 0; i < sum_stages; ++i)
{
carry_max = wrapper::vpmax(carry_max, carry_max);
}
T max_val = wrapper::vgetlane(carry_max, 0);
// Compute left-over elements
for(; x < window_end_x; ++x)
{
max_val = *(in_ptr + x) > max_val ? *(in_ptr + x) : max_val;
}
*out_ptr = max_val;
},
input, output);
}
} // namespace
NELogits1DMaxKernel::NELogits1DMaxKernel()
: _func(nullptr), _border_size()
{
}
BorderSize NELogits1DMaxKernel::border_size() const
{
return _border_size;
}
void NELogits1DMaxKernel::configure(const ITensor *input, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), output->info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*input->info(), *output->info()));
// Configure kernel window
// Softmax across the x dimension
const TensorShape output_shape = TensorShape(input->info()->tensor_shape()).set(0, 1);
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());
Window win = calculate_max_window(*input->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
switch(input->info()->data_type())
{
case DataType::QASYMM8:
_func = &logits_1d_max<qasymm8_t>;
break;
case DataType::QASYMM8_SIGNED:
_func = &logits_1d_max<qasymm8_signed_t>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &logits_1d_max<float16_t>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
_func = &logits_1d_max<float>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
_input = input;
_output = output;
const int input_width = input->info()->valid_region().shape.x();
const int num_elems_processed_per_iteration = 16U / data_size_from_type(input->info()->data_type());
const int num_elems_read_per_iteration = ceil_to_multiple(input_width, num_elems_processed_per_iteration);
_border_size = BorderSize(0, num_elems_read_per_iteration - input_width, 0, 0);
INEKernel::configure(win);
}
Status NELogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*input, *output));
return Status{};
}
void NELogits1DMaxKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(*_input, *_output, window);
}
namespace
{
Status validate_arguments_logits_softmax(const ITensorInfo &input, const ITensorInfo &max,
const ITensorInfo &output, const float beta, const ITensorInfo &tmp, bool is_log)
{
ARM_COMPUTE_UNUSED(beta);
// Check input
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input.data_type());
// Check max
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &max);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(input.tensor_shape()).set(0, 1), max.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &max);
// Check output if configured
if(output.total_size() != 0)
{
const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input.data_type(), is_log) : output.quantization_info();
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &output);
ARM_COMPUTE_RETURN_ERROR_ON(output.quantization_info() != output_quantization);
}
// Check tmp if configured
if(tmp.total_size() != 0)
{
const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input.data_type();
ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type);
// We could potentially reduce tmp memory if we could predict or make an assumption
// on the maximum number of threads that will run in parallel.
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input, &tmp);
}
return Status{};
}
template <typename T, bool is_log>
void logits_1d_softmax_qasymm8(const ITensor &in, const ITensor &max, void *const tmp, ITensor &out, const float beta, const Window &window)
{
static_assert(std::is_same<T, qasymm8_t>::value
|| std::is_same<T, qasymm8_signed_t>::value,
"quantized type should be either qasymm8_t or qasymm8_signed_t.");
const int start_x = in.info()->valid_region().anchor.x();
const int input_width = in.info()->valid_region().shape.x();
const float scale_beta = -beta * in.info()->quantization_info().uniform().scale;
const auto scale_beta_vec = vdupq_n_f32(scale_beta);
Iterator in_it(&in, window);
Iterator max_it(&max, window);
Iterator out_it(&out, window);
constexpr int vec_size = 16;
execute_window_loop(window, [&](const Coordinates &)
{
/* Get pointers */
const auto in_ptr = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
const auto tmp_ptr = reinterpret_cast<float *>(tmp);
float sum{};
float sum_inversed{};
/* Compute exponentials and sum */
{
/* Get max value */
const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{});
/* Init sum to zero */
float32x4x4_t vec_sum =
{
vdupq_n_f32(0.f),
vdupq_n_f32(0.f),
vdupq_n_f32(0.f),
vdupq_n_f32(0.f),
};
/* Loop over row and compute exponentials and sum */
int x = 0;
for(; x <= (input_width - vec_size); x += vec_size)
{
auto vec_elements = wrapper::vloadq(in_ptr + x);
vec_elements = wrapper::vqsub(vec_max, vec_elements);
auto vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);
if(is_log)
{
vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
}
else
{
vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
vec_sum.val[0] = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
vec_sum.val[1] = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
vec_sum.val[2] = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
vec_sum.val[3] = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
}
vst4q_f32(tmp_ptr + x, vec_elements_flt);
}
/* Reduce sum */
const auto sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3]));
auto sum_res = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte));
sum_res = vpadd_f32(sum_res, sum_res);
sum = wrapper::vgetlane(sum_res, 0);
/* Run remaining elements */
for(; x < input_width; ++x)
{
float element{};
if(is_log)
{
element = (max_val - in_ptr[x]) * scale_beta;
sum += std::exp(element);
}
else
{
element = std::exp((max_val - in_ptr[x]) * scale_beta);
sum += element;
}
tmp_ptr[x] = element;
}
if(!is_log)
{
sum_inversed = 256.f / sum;
}
else
{
sum = std::log(sum);
}
}
/* Normalize exponentials */
{
constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;
/* Loop over row and compute softmax */
int x = 0;
for(; x <= (input_width - vec_size); x += vec_size)
{
using int_vec_type = wrapper::traits::neon_vector_t<T, 16>;
float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x);
int_vec_type normalized_value{};
if(is_log)
{
const float32x4x4_t sub =
{
vsubq_f32(vec_in.val[0], vdupq_n_f32(sum)),
vsubq_f32(vec_in.val[1], vdupq_n_f32(sum)),
vsubq_f32(vec_in.val[2], vdupq_n_f32(sum)),
vsubq_f32(vec_in.val[3], vdupq_n_f32(sum)),
};
normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
}
else
{
float32x4x4_t mul =
{
vmulq_f32(vec_in.val[0], vdupq_n_f32(sum_inversed)),
vmulq_f32(vec_in.val[1], vdupq_n_f32(sum_inversed)),
vmulq_f32(vec_in.val[2], vdupq_n_f32(sum_inversed)),
vmulq_f32(vec_in.val[3], vdupq_n_f32(sum_inversed)),
};
if(is_qasymm8_signed)
{
const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
mul.val[0] = wrapper::vsub(mul.val[0], offset_vec);
mul.val[1] = wrapper::vsub(mul.val[1], offset_vec);
mul.val[2] = wrapper::vsub(mul.val[2], offset_vec);
mul.val[3] = wrapper::vsub(mul.val[3], offset_vec);
}
normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
}
wrapper::vstore(out_ptr + x, normalized_value);
}
/* Run remaining elements */
for(; x < input_width; ++x)
{
if(is_log)
{
out_ptr[x] = utils::cast::saturate_cast<T>(tmp_ptr[x] - sum);
}
else
{
out_ptr[x] = utils::cast::saturate_cast<T>((tmp_ptr[x] * sum_inversed) - (is_qasymm8_signed ? 128.f : 0));
}
}
}
},
in_it, max_it, out_it);
}
template <typename T, bool is_log = false>
void logits_1d_softmax_float(const ITensor &in, const ITensor &max, void *const tmp,
ITensor &out, const float beta, const Window &window)
{
const int start_x = in.info()->valid_region().anchor.x();
const int input_width = in.info()->valid_region().shape.x();
Iterator in_it(&in, window);
Iterator max_it(&max, window);
Iterator out_it(&out, window);
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
constexpr int vec_size = 16 / sizeof(T);
const int sum_stages = log2(vec_size / 2);
execute_window_loop(window, [&](const Coordinates &)
{
/* Get pointers */
const auto in_ptr = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
const auto tmp_ptr = reinterpret_cast<T *>(tmp);
T sum{};
T sum_inversed{};
/* Compute exponentials and sum */
{
/* Get max value */
const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
const auto vec_max = wrapper::vdup_n(max_val, ExactTagType{});
/* Init sum to zero */
auto vec_sum = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
/* Loop over row and compute exponentials and sum */
int x = 0;
for(; x <= (input_width - vec_size); x += vec_size)
{
auto vec_elements = wrapper::vloadq(in_ptr + x);
vec_elements = wrapper::vsub(vec_elements, vec_max);
if(is_log)
{
vec_elements = wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{}));
vec_sum = wrapper::vadd(vec_sum, wrapper::vexpq(vec_elements));
}
else
{
vec_elements = wrapper::vexpq(wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{})));
vec_sum = wrapper::vadd(vec_sum, vec_elements);
}
wrapper::vstore(tmp_ptr + x, vec_elements);
}
/* Reduce sum */
auto sum_res = wrapper::vpadd(wrapper::vgethigh(vec_sum), wrapper::vgetlow(vec_sum));
for(int i = 0; i < sum_stages; ++i)
{
sum_res = wrapper::vpadd(sum_res, sum_res);
}
sum = wrapper::vgetlane(sum_res, 0);
/* Run remaining elements */
for(; x < input_width; ++x)
{
T element{};
if(is_log)
{
element = (in_ptr[x] - max_val) * beta;
sum += std::exp(element);
}
else
{
element = std::exp((in_ptr[x] - max_val) * beta);
sum += element;
}
tmp_ptr[x] = element;
}
if(!is_log)
{
sum_inversed = T(1) / sum;
}
else
{
sum = static_cast<T>(std::log(sum));
}
}
/* Normalize exponentials */
{
/* Loop over row and compute softmax */
int x = 0;
for(; x <= (input_width - vec_size); x += vec_size)
{
auto vec_in = wrapper::vloadq(tmp_ptr + x);
auto normalized_value = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
if(is_log)
{
normalized_value = wrapper::vsub(vec_in, wrapper::vdup_n(static_cast<T>(sum), ExactTagType{}));
}
else
{
normalized_value = wrapper::vmul(vec_in, wrapper::vdup_n(static_cast<T>(sum_inversed), ExactTagType{}));
}
wrapper::vstore(out_ptr + x, normalized_value);
}
/* Run remaining elements */
for(; x < input_width; ++x)
{
if(is_log)
{
out_ptr[x] = tmp_ptr[x] - sum;
}
else
{
out_ptr[x] = tmp_ptr[x] * sum_inversed;
}
}
}
},
in_it, max_it, out_it);
}
} // namespace
template <bool IS_LOG>
NELogits1DSoftmaxKernel<IS_LOG>::NELogits1DSoftmaxKernel()
: _func(nullptr), _input(nullptr), _max(nullptr), _output(nullptr), _beta(1.0f), _tmp(nullptr)
{
}
template <bool IS_LOG>
void NELogits1DSoftmaxKernel<IS_LOG>::configure(const ITensor *input, const ITensor *max, ITensor *output, const float beta, ITensor *tmp)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), max->info(), output->info(), tmp->info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*input->info(), *max->info(), *output->info(), beta, *tmp->info(), IS_LOG));
// Configure kernel window
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
// Output auto initialization if not yet initialized
const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(input->info()->data_type(), IS_LOG) : output->info()->quantization_info();
auto_init_if_empty(*output->info(), TensorInfo(*input->info()).set_quantization_info(output_quantization).reset_padding());
// Tmp auto initialization if not yet initialized
const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : input->info()->data_type();
auto_init_if_empty(*tmp->info(), TensorInfo(*input->info()).set_data_type(tmp_data_type).reset_padding());
// Configure kernel window
Window win = calculate_max_window(*max->info(), Steps());
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
switch(input->info()->data_type())
{
case DataType::QASYMM8:
_func = &logits_1d_softmax_qasymm8<qasymm8_t, IS_LOG>;
break;
case DataType::QASYMM8_SIGNED:
_func = &logits_1d_softmax_qasymm8<qasymm8_signed_t, IS_LOG>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &logits_1d_softmax_float<float16_t, IS_LOG>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
_func = &logits_1d_softmax_float<float, IS_LOG>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
break;
}
_input = input;
_max = max;
_output = output;
_beta = beta;
_tmp = tmp;
INEKernel::configure(win);
}
template <bool IS_LOG>
Status NELogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *max,
const ITensorInfo *output, const float beta, const ITensorInfo *tmp)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, output, tmp);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*input, *max, *output, beta, *tmp, IS_LOG));
return Status{};
}
template <bool IS_LOG>
void NELogits1DSoftmaxKernel<IS_LOG>::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
const unsigned int num_elems_processed_per_iteration = _input->info()->valid_region().shape.x();
const unsigned int tmp_size_for_thread = _tmp->info()->element_size() * num_elems_processed_per_iteration;
ARM_COMPUTE_ERROR_ON(_tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
void *tmp_for_thread = _tmp->buffer() + (info.thread_id * tmp_size_for_thread);
(*_func)(*_input, *_max, tmp_for_thread, *_output, _beta, window);
}
template class NELogits1DSoftmaxKernel<true>;
template class NELogits1DSoftmaxKernel<false>;
} // namespace arm_compute