blob: 23788b7c398bfbc524ae1e7b07e58d43516de80f [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFFTConvolutionLayer.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/NEON/kernels/NECopyKernel.h"
#include "src/core/NEON/kernels/NEFFTDigitReverseKernel.h"
#include "src/core/NEON/kernels/NEFFTRadixStageKernel.h"
#include "src/core/NEON/kernels/NEFFTScaleKernel.h"
#include "src/core/NEON/kernels/NEPadLayerKernel.h"
#include "src/core/NEON/kernels/NEReductionOperationKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/utils/helpers/fft.h"
#include "support/MemorySupport.h"
namespace arm_compute
{
namespace
{
int pad_decomposable(int N)
{
const auto supported_radix = NEFFTRadixStageKernel::supported_radix();
int pad = 0;
bool is_decomposed = false;
while(!is_decomposed)
{
const auto decomposed_vector = arm_compute::helpers::fft::decompose_stages(N++, supported_radix);
is_decomposed = !decomposed_vector.empty();
if(!is_decomposed)
{
++pad;
}
}
return pad;
}
} // namespace
NEFFTConvolutionLayer::NEFFTConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager),
_flip_weights_func(),
_permute_input_func(),
_permute_output_func(),
_permute_weights_func(),
_permute_bias_func(),
_pad_input_func(),
_pad_weights_func(),
_transform_input_func(memory_manager),
_transform_weights_func(),
_itransform_output_func(memory_manager),
_prod_func(),
_reduce_func(),
_extract_output_func(),
_bias_add_func(),
_activation_layer_func(),
_permuted_input(),
_permuted_weights(),
_permuted_bias(),
_permuted_output(),
_padded_input(),
_padded_weights(),
_flip_axis(),
_flipped_weights(),
_transformed_input(),
_transformed_weights(),
_input_weights_product(),
_output_product(),
_output_reduced(),
_itransformed_output(),
_reshaped_output(),
_bias_output(),
_original_weights(nullptr),
_original_bias(nullptr),
_is_activationlayer_enabled(false),
_needs_permute(false),
_has_bias(false),
_is_prepared(false)
{
}
NEFFTConvolutionLayer::~NEFFTConvolutionLayer() = default;
void NEFFTConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const ActivationLayerInfo &act_info)
{
_original_weights = weights;
_original_bias = biases;
// Flat if bias addition is required
_has_bias = biases != nullptr;
// Get indices for the width and height
const size_t idx_width = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape, kernel size and output tile
const Size2D input_dims = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
const Size2D pad_valid = Size2D(pad_decomposable(input_dims.x() + kernel_size.x() - 1),
pad_decomposable(input_dims.y() + kernel_size.y() - 1));
// Tensors to use
ITensor *input_to_use = input;
const ITensor *weights_to_use = weights;
ITensor *output_to_use = _has_bias ? &_bias_output : output;
// Permute bias
if(biases != nullptr)
{
_permute_bias_func.configure(biases, &_permuted_bias, PermutationVector(1U, 2U, 0U));
_permuted_bias.info()->set_data_layout(DataLayout::NCHW);
}
// Permute input if needed
_needs_permute = input->info()->data_layout() == DataLayout::NHWC;
if(_needs_permute)
{
_memory_group.manage(&_permuted_input);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input_func.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights_func.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
input_to_use = &_permuted_input;
weights_to_use = &_permuted_weights;
}
// Flip weights
_flipped_weights.allocator()->init(weights_to_use->info()->clone()->set_is_resizable(true).reset_padding());
_flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
_flip_weights_func.configure(weights_to_use, &_flipped_weights, &_flip_axis);
// Pad weights
const PaddingList padding_w = { { 0, input_dims.x() + pad_valid.x() - 1 }, { 0, input_dims.y() + pad_valid.y() - 1 } };
_pad_weights_func.configure(&_flipped_weights, &_padded_weights, padding_w);
// Transform weights
_transform_weights_func = support::cpp14::make_unique<NEFFT2D>();
_transform_weights_func->configure(&_padded_weights, &_transformed_weights, FFT2DInfo());
// Pad input
const PaddingList padding_in = { { 0, kernel_size.x() + pad_valid.x() - 1 }, { 0, kernel_size.y() + pad_valid.y() - 1 } };
_memory_group.manage(&_padded_input);
_pad_input_func.configure(input_to_use, &_padded_input, padding_in);
if(_needs_permute)
{
_permuted_input.allocator()->allocate();
}
// Transform input
_memory_group.manage(&_transformed_input);
_transform_input_func.configure(&_padded_input, &_transformed_input, FFT2DInfo());
_padded_input.allocator()->allocate();
// Perform product
_memory_group.manage(&_output_product);
_prod_func.configure(&_transformed_input, &_transformed_weights, &_output_product);
_transformed_input.allocator()->allocate();
// Perform reduction
_memory_group.manage(&_output_reduced);
_reduce_func.configure(&_output_product, &_output_reduced, 2, ReductionOperation::SUM);
_output_product.allocator()->allocate();
// Transform output
_memory_group.manage(&_itransformed_output);
FFT2DInfo itranform_info;
itranform_info.direction = FFTDirection::Inverse;
_itransformed_output.allocator()->init(_output_reduced.info()->clone()->set_is_resizable(true).set_num_channels(1).reset_padding());
_itransform_output_func.configure(&_output_reduced, &_itransformed_output, itranform_info);
_output_reduced.allocator()->allocate();
// Reshape output
TensorShape reshaped_shape = _itransformed_output.info()->tensor_shape();
reshaped_shape.remove_dimension(2);
_reshaped_output.allocator()->init(_itransformed_output.info()->clone()->set_tensor_shape(reshaped_shape));
// Extract correct region
const int start_left = kernel_size.x() - conv_info.pad_left() - 1;
const int start_top = kernel_size.y() - conv_info.pad_top() - 1;
const int end_right = _reshaped_output.info()->tensor_shape().x() - (kernel_size.x() - conv_info.pad_right() - 1) - pad_valid.x();
const int end_botton = _reshaped_output.info()->tensor_shape().y() - (kernel_size.y() - conv_info.pad_bottom() - 1) - pad_valid.y();
if(_has_bias)
{
_memory_group.manage(&_bias_output);
}
else if(_needs_permute)
{
output_to_use = &_permuted_output;
_memory_group.manage(&_permuted_output);
}
_extract_output_func.configure(&_reshaped_output, output_to_use, Coordinates(start_left, start_top), Coordinates(end_right, end_botton));
_reshaped_output.allocator()->allocate();
_itransformed_output.allocator()->allocate();
// Add bias
if(biases != nullptr)
{
output_to_use = output;
if(_needs_permute)
{
output_to_use = &_permuted_output;
_memory_group.manage(&_permuted_output);
}
auto_init_if_empty(*output_to_use->info(), *_bias_output.info());
_bias_add_func.configure(&_bias_output, &_permuted_bias, output_to_use, ConvertPolicy::WRAP);
_bias_output.allocator()->allocate();
}
// Permute output
if(_needs_permute)
{
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permute_output_func.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
// Allocate tensors
_permuted_output.allocator()->allocate();
}
// Configure Activation Layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activation_layer_func.configure(output, nullptr, act_info);
}
// Setup flip axis data
_flip_axis.allocator()->allocate();
auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
axis_data[0] = 0;
axis_data[1] = 1;
}
Status NEFFTConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
// Get indices for the width and height
const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
// Input shape, kernel size and output tile
const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
// Strides
const auto strides = conv_info.stride();
ARM_COMPUTE_RETURN_ERROR_ON(strides.first != strides.second && strides.first != 1);
ARM_COMPUTE_RETURN_ERROR_ON(kernel_size.x() != kernel_size.y());
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.pad_left() != (kernel_size.x() / 2) || conv_info.pad_right() != (kernel_size.x() / 2));
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.pad_top() != (kernel_size.y() / 2) || conv_info.pad_bottom() != (kernel_size.y() / 2));
// Validate biases
if(biases != nullptr)
{
const size_t idx_channels = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_channels] != biases->tensor_shape().x());
}
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON((input->tensor_shape()[idx_height] != output->tensor_shape()[idx_height]) || (input->tensor_shape()[idx_width] != output->tensor_shape()[idx_width]));
// Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
}
return Status{};
}
void NEFFTConvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Transform input
if(_needs_permute)
{
_permute_input_func.run();
}
_pad_input_func.run();
_transform_input_func.run();
// Perform operations to frequency domain
_prod_func.run();
_reduce_func.run();
// Transform output
_itransform_output_func.run();
_reshaped_output.allocator()->import_memory(_itransformed_output.buffer());
_extract_output_func.run();
// Add bias
if(_has_bias)
{
_bias_add_func.run();
}
if(_needs_permute)
{
_permute_output_func.run();
}
// Run activation layer
if(_is_activationlayer_enabled)
{
_activation_layer_func.run();
}
}
void NEFFTConvolutionLayer::prepare()
{
if(!_is_prepared)
{
// Permute bias to NCHW
if(_original_bias != nullptr)
{
_permuted_bias.allocator()->allocate();
_permute_bias_func.run();
_original_bias->mark_as_unused();
}
const ITensor *cur_weights = _original_weights;
// Permute weights
if(_needs_permute)
{
ARM_COMPUTE_ERROR_ON(!cur_weights->is_used());
_permuted_weights.allocator()->allocate();
_permute_weights_func.run();
cur_weights->mark_as_unused();
cur_weights = &_permuted_weights;
}
// Flip weights
_flipped_weights.allocator()->allocate();
_flip_weights_func.run();
cur_weights->mark_as_unused();
// Pad weights
_padded_weights.allocator()->allocate();
_pad_weights_func.run();
_flipped_weights.mark_as_unused();
_flipped_weights.allocator()->free();
// Transform weights to frequency domain
_transformed_weights.allocator()->allocate();
_transform_weights_func->run();
_transform_weights_func.reset();
_padded_weights.mark_as_unused();
_padded_weights.allocator()->free();
_is_prepared = true;
}
}
} // namespace arm_compute