blob: 714fa58a6673a821c2c04759e6ea55f86b8dd7ee [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/core/NEON/kernels/NEConvertFullyConnectedWeightsKernel.h"
#include "src/core/NEON/kernels/NEConvertQuantizedSignednessKernel.h"
#include "src/core/NEON/kernels/NEFlattenLayerKernel.h"
#include "src/core/NEON/kernels/NEFlattenLayerKernel.h"
#include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
#include "src/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
#include "src/core/NEON/kernels/NEGEMMMatrixAdditionKernel.h"
#include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
#include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
#include "src/core/NEON/kernels/NETransposeKernel.h"
#include "support/MemorySupport.h"
#include <algorithm>
#include <cmath>
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
namespace
{
// Get min, max bound of a quantized assymetric output tensor, with the effect of fused activation
std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
{
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
const UniformQuantizationInfo q_unif = q_info.uniform();
if(act_info.enabled())
{
switch(act_info.activation())
{
case ActivationLayerInfo::ActivationFunction::RELU:
type_min = PixelValue(q_unif.offset);
break;
case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
type_min = PixelValue(q_unif.offset);
type_max = PixelValue(act_info.a(), data_type, q_info);
break;
case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
type_min = PixelValue(act_info.b(), data_type, q_info);
type_max = PixelValue(act_info.a(), data_type, q_info);
break;
default:
ARM_COMPUTE_ERROR("Activation function not supported.");
break;
}
}
return std::make_pair(type_min, type_max);
}
Status get_gemmlowp_output_stage_info(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const ActivationLayerInfo &act,
GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
{
const auto data_type = input->data_type();
const QuantizationInfo oq_info = output->quantization_info();
const UniformQuantizationInfo iq_unif = input->quantization_info().uniform();
const UniformQuantizationInfo wq_unif = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_unif = oq_info.uniform();
float multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
int32_t output_multiplier;
int32_t output_shift;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
gemmlowp_output_stage_info.gemmlowp_shift = output_shift;
gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
gemmlowp_output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_output_stage_info.gemmlowp_min_bound = type_min.get<int32_t>();
gemmlowp_output_stage_info.gemmlowp_max_bound = type_max.get<int32_t>();
return Status{};
}
Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const ActivationLayerInfo &act)
{
if(is_data_type_quantized_asymmetric(input->data_type()))
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info(input->quantization_info().uniform().scale, -input->quantization_info().uniform().offset);
const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(input, weights, output, act, gemmlowp_output_stage_info));
GEMMInfo gemm_info;
gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
// Validate gemmlowp function
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(&input->clone()->set_quantization_info(input_quantization_info),
&weights->clone()->set_quantization_info(weights_quantization_info),
biases,
output,
gemm_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMM::validate(input, weights, biases, output, 1.f, 1.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
}
return Status{};
}
} // namespace
void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output)
{
auto k = arm_compute::support::cpp14::make_unique<NETransposeKernel>();
k->configure(input, output);
_kernel = std::move(k);
}
Status NEFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output)
{
return NETransposeKernel::validate(input, output);
}
NEFullyConnectedLayer::~NEFullyConnectedLayer() = default;
NEFullyConnectedLayer::NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
: _memory_group(std::move(memory_manager)), _weights_manager(weights_manager), _flatten_kernel(), _convert_weights(), _convert_weights_managed(), _reshape_weights_function(),
_reshape_weights_managed_function(), _mm_gemm(nullptr, weights_manager), _mm_gemmlowp(nullptr, weights_manager), _flatten_output(), _converted_weights_output(), _reshape_weights_output(),
_original_weights(nullptr), _are_weights_converted(true), _are_weights_reshaped(false), _is_fc_after_conv(false), _is_quantized_asymmetric(false), _is_prepared(false)
{
}
void NEFullyConnectedLayer::configure_mm(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
{
if(_is_quantized_asymmetric)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
// Configure gemmlowp function and output stage for asymmetric quantized types
GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
const Status status = get_gemmlowp_output_stage_info(input->info(), weights->info(), output->info(), act, gemmlowp_output_stage_info);
ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
GEMMInfo gemm_info;
gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
gemm_info.set_activation_info(act);
_mm_gemmlowp.configure(input, weights, biases, output, gemm_info);
// Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
else
{
// Configure matrix multiply kernel
GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
gemm_info.set_activation_info(act);
_mm_gemm.configure(input, weights, biases, output, 1.f, 1.0f, gemm_info);
}
}
void NEFullyConnectedLayer::configure_conv_fc(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
{
ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for flatten
TensorShape shape_flatten = compute_flatten_shape(input->info());
_flatten_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
// Configure flatten kernel
_memory_group.manage(&_flatten_output);
_flatten_kernel = arm_compute::support::cpp14::make_unique<NEFlattenLayerKernel>();
_flatten_kernel->configure(input, &_flatten_output);
// Configure matrix multiply kernel
configure_mm(&_flatten_output, weights, biases, output, act);
// Allocate the output tensor for flatten once all the configure methods have been called
_flatten_output.allocator()->allocate();
}
void NEFullyConnectedLayer::configure_fc_fc(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
// Configure matrix multiply kernel
configure_mm(input, weights, biases, output, act);
}
void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output,
FullyConnectedLayerInfo fc_info)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
fc_info));
_are_weights_converted = true;
_are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
_is_fc_after_conv = true;
_is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
_original_weights = weights;
if(_weights_manager)
{
_weights_manager->manage(weights);
}
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensor *weights_to_use = weights;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
if(is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
input->info()->tensor_shape().cend(),
output->info()->tensor_shape().cbegin() + 1));
}
else
{
_is_fc_after_conv = input->info()->num_dimensions() > 1;
}
// Reshape weights if needed
if(!_are_weights_reshaped)
{
if(_weights_manager && _weights_manager->are_weights_managed(weights))
{
_reshape_weights_managed_function.configure(weights);
weights_to_use = _weights_manager->acquire(weights, &_reshape_weights_managed_function);
}
else
{
// Reshape the weights
_reshape_weights_function.configure(weights, &_reshape_weights_output);
weights_to_use = &_reshape_weights_output;
}
}
// Convert weights if needed
if(_is_fc_after_conv && (input->info()->data_layout() != fc_info.weights_trained_layout))
{
if(_weights_manager && _weights_manager->are_weights_managed(weights_to_use))
{
_convert_weights_managed.configure(weights_to_use,
input->info()->tensor_shape(),
fc_info.weights_trained_layout);
weights_to_use = _weights_manager->acquire(weights, &_convert_weights_managed);
}
else
{
// Convert weights
_convert_weights.configure(weights_to_use,
&_converted_weights_output,
input->info()->tensor_shape(),
fc_info.weights_trained_layout);
weights_to_use = &_converted_weights_output;
}
_are_weights_converted = false;
}
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc(input, weights_to_use, biases, output, fc_info.activation_info);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc(input, weights_to_use, biases, output, fc_info.activation_info);
}
_are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
}
Status NEFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(biases != nullptr && biases->num_dimensions() > 1);
bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
bool is_fc_after_conv = true;
const ITensorInfo &flatten_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(input)));
const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensorInfo *input_to_use = input;
const ITensorInfo *weights_to_use = weights;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = output->dimension(1) > 1;
if(is_batched_fc_layer)
{
is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->tensor_shape().cbegin() + 3,
input->tensor_shape().cend(),
output->tensor_shape().cbegin() + 1));
}
else
{
is_fc_after_conv = input->num_dimensions() > 1;
}
if(!weights_reshaped)
{
// Validate reshape weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayerReshapeWeights::validate(weights, &reshaped_weights));
weights_to_use = &reshaped_weights;
}
if(is_fc_after_conv && (input->data_layout() != fc_info.weights_trained_layout))
{
// Validate convert weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEConvertFullyConnectedWeights::validate(weights_to_use,
&converted_weights,
input->tensor_shape(),
fc_info.weights_trained_layout));
weights_to_use = &converted_weights;
}
if(is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (input->dimension(0) * input->dimension(1) * input->dimension(2))));
// Validate flatten kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayerKernel::validate(input, &flatten_input));
input_to_use = &flatten_input;
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
}
// Validate matrix multiply kernel
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(input_to_use, weights_to_use, biases, output, fc_info.activation_info));
return Status{};
}
void NEFullyConnectedLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Linearize input if it comes from a convolutional layer
if(_is_fc_after_conv)
{
NEScheduler::get().schedule(_flatten_kernel.get(), Window::DimY);
}
// Run matrix multiply
if(_is_quantized_asymmetric)
{
_mm_gemmlowp.run();
}
else
{
_mm_gemm.run();
}
}
void NEFullyConnectedLayer::prepare()
{
if(!_is_prepared)
{
if(!_weights_manager)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
}
auto release_unused = [](Tensor * w)
{
if(!w->is_used())
{
w->allocator()->free();
}
};
// Pointer to current weights
const ITensor *cur_weights = _original_weights;
// Reshape of the weights (happens only once)
if(!_are_weights_reshaped)
{
if(_weights_manager && _weights_manager->are_weights_managed(_original_weights))
{
cur_weights = _weights_manager->run(cur_weights, &_reshape_weights_managed_function);
}
else
{
// Reshape of the weights (happens only once)
if(!_are_weights_reshaped)
{
// Run reshape weights kernel and mark weights as unused
_reshape_weights_output.allocator()->allocate();
_reshape_weights_function.run();
}
cur_weights->mark_as_unused();
cur_weights = &_reshape_weights_output;
}
_are_weights_reshaped = true;
}
// Convert weights if needed (happens only once)
if(!_are_weights_converted)
{
if(_weights_manager && _weights_manager->are_weights_managed(cur_weights))
{
_weights_manager->run(cur_weights, &_convert_weights_managed);
}
else
{
_converted_weights_output.allocator()->allocate();
_convert_weights.run();
cur_weights->mark_as_unused();
}
_are_weights_converted = true;
}
// Release reshaped weights if unused
release_unused(&_reshape_weights_output);
// Prepare GEMM prepare and release unused weights
if(!_is_quantized_asymmetric)
{
_mm_gemm.prepare();
}
// Release converted weights if unused
release_unused(&_reshape_weights_output);
release_unused(&_converted_weights_output);
_is_prepared = true;
}
}
} // namespace arm_compute